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Abstract— Compact and low-cost sensors used in wireless
sensor networks are vulnerable to deterioration and failure.
As the number and scale of sensor deployments grow, the
failure of sensors becomes an increasingly paramount issue.
This paper presents a distributed, reference-free fault detection
algorithm that is based on local pair-wise verification between
sensors monitoring the same physical system. Specifically, a linear
relationship is shown to exist between the outputs of a pair
of sensors measuring the same system. Using this relationship,
faulty sensors may be detected within subsystems of the global
system. Moreover, faulty sensors suffering from sparse spikes in
their measurements can be identified with spike magnitudes and
times accurately estimated. An appealing feature of the proposed
method is that the need for reference sensors and complete
knowledge of the system input are not required. Due to the pair-
wise nature of the proposed algorithm, it can also be performed in
a completely decentralized fashion. This ensures the method can
be scaled to large sensor networks and lead to significant energy
savings derived from reduced wireless communication compared
to centralized approaches.

Index Terms— Fault detection, in-network data processing,
wireless sensor networks (WSNs).

I. INTRODUCTION

RECENT advances in communication technology and
embedded systems has resulted in wireless sensors that

are smaller in size, consume less power and achieve higher
transmission rates. By adopting wireless sensor networks
(WSNs), the cost of monitoring systems, such as structural
[2], [3] and environmental monitoring systems [4], [5], are
greatly reduced due to the eradication of expensive wiring.
The small form factor of wireless sensors also opens up new
applications that require mobility or portability, such as ani-
mal [6] and vehicle [7] tracking. However, small form factors
and low costs also render wireless sensors more susceptible
to faults and failures. To ensure wireless sensor networks are
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reliable over long periods of service, automated detection and
identification of sensor faults must be an integral part of their
design and operation, especially for applications where the
monitoring system is unattended after deployment. With most
wireless sensors limited in both energy and processing capac-
ity [8], it is highly desirable to design energy efficient and low-
complexity fault detection algorithms that can be embedded
directly into the wireless sensors for in-network execution.

Over the past decade, sensor fault and failure detection has
been extensively studied by the control system field. A sensor
failure is defined as when a sensor is in an irrecoverable
state of inoperation (e.g., not turning on or not responding).
In contrast, a sensor fault is defined as when the sensor is
outputting measurements but the measurements are intermit-
tently or permanently corrupted. Various forms of sensor faults
exist including excessive noise, mean drifts, random spikes and
nonlinearity in the sensor transduction mechanism.

Most of the prior studies on sensor fault detection are based
on concepts associated with system failure detection dating
back to the 1980s [9]–[11]. The most popular approach is
to make use of analytical redundancies in the system. The
main concept behind this approach is that when multiple
sensors are attached to the same physical system, they observe
common system dynamics resulting in correlation between the
observations made by these sensors. Such correlations can
be utilized to evaluate the behavior of a sensor of unknown
fault status. Any discrepancy detected may be treated as a
potential sensor fault feature and subject to further analysis.
Many notable studies have explored analytical redundancy to
determine sensor faults [12]–[18]. For example, Li et al. [14]
presented a reference-based sensor fault detection method
which requires the existence of a number of fault-free sensors
defined a priori as reference sensors. The method represents
the output of any uncertain sensor (i.e., a sensor with unknown
fault status) as a function of the output of the reference sensors
based on the model of the system. Fault detection is based
on discrepancies between the predicted and measured output
of the uncertain sensor. This method requires the number of
reference sensors to be equal to or larger than the number of
uncertain sensors. Alternatively, Da and Lin [15] proposed a
sensor fault detection algorithm using a bank of Kalman filters.
Abnormal sensor behavior is detected by comparing the sys-
tem state estimated by a subset of sensors with that estimated
by all of the sensors under the assumption that these two states
should agree with each other when the system is fault-free.
This method is more efficient in detecting soft sensor faults
(i.e., those that occur gradually) but can generally be applied
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to sudden and intermittent faults. Ricquebourg et al. [17]
proposed a Markov chain modeling approach to sensor fault
detection. The method captures the sensor dynamics by a
Markov chain under a transferable belief framework. Once the
model is established, any sensor whose observation disagrees
with the Markov chain transition is further analyzed using pre-
defined decision rules. A fault detection filter design method
based on the state space model was proposed by Dai et al. [18]
to increase the sensitivity of the discrepancy estimation to the
faults. The filter detects faults existing in the system instead
of individual sensors by observing the output discrepancy of
the entire system. When the noise disturbance is band-limited,
and the disturbance power spectral density is known, the study
showed that the filter zeros can be placed near the disturbance
frequency to attenuate the noise disturbance, i.e., increase the
significance of the fault signal in the discrepancy observation.

These prior studies all require knowledge of the system
model and/or the presence of reference sensors. However, an
accurate system model may be difficult to obtain in practice
and ensuring the existence of (especially a large number
of) reference sensors can be challenging, if at all possible.
Furthermore, the aforementioned algorithms are centralized
and require a base station where data from all of the sensor
nodes has been aggregated prior to the execution of the
detection algorithm. While such an approach is appropriate for
wired monitoring systems, it is potentially ill-suited for WSNs
where communication of raw data to a centralized base station
can consume scarce energy. There have been some efforts
aimed at attempting to detect sensor faults in a decentralized
manner. For example, Chen et al. [19] proposed an iterative
and distributive detection algorithm. This method requires the
network to be dense so that sensors have highly correlated
outputs. Each sensor is evaluated by its neighbors who collec-
tively generate the “tendency state” of the sensor via a voting
process. Afterward, each sensor’s “tendency state” is compared
with its neighbors’ to decide if the sensor is faulty or not.
Although the detection process occurs locally, each sensor is
required to compare its output with its neighbors several times;
at least 5 neighbors are recommended to ensure the method
has a high level of accuracy. This drives the communication
cost unnecessarily high and increases the processing time.

In this paper, a novel fault detection method which utilizes
system redundancy but without requiring knowledge of a
physics-based system model or the existence of reference
sensors is proposed. The performance of the algorithm will
not be affected even if all of the sensors in the network
are faulty. The method is especially well suited for resource
constrained WSNs because the detection algorithm is run
locally by each wireless sensor node resulting in reduced com-
munication demand compared to existing centralized methods.
Under certain conditions, knowledge of system inputs is not
necessary for the detection algorithm to work. The method
is capable of detecting general faults within arbitrary pairs
of sensors (i.e., subsystems). However, the method is further
specialized to identify spike faults from other type of faults
with the aim of detecting and quantifying (e.g., location,
magnitude) spikes so that they could be removed during post-
processing. This is a very appealing feature of the proposed

algorithm that the aforementioned studies lack, as spike faults
are common in sensors. One of the main causes of this type
of sensor fault is loose electrical contacts inside a sensor
node or from poor shielding in an active electro-magnetic
environment. In addition, the noise process inherent to a sensor
(if excessive can be regarded as a fault) is also characterized
by the sensor fault detection methodology proposed. This
illustrates the versatility of the fault detection methodology.

The remainder of this paper is organized as follows. In
Section II, the fault detection problem is formally stated.
This section establishes a linear relationship between pairs of
sensors from a linear time invariant (LTI) model to lay foun-
dation for the fault detection method introduced in Section III.
In Section III, an analytical redundancy-based sensor fault
detection method using pairs of sensors is presented. The
method presented is quite general and is not limited to any
particular type of sensor fault but the application of the method
to the detection of spike faults is offered. The performance
of the fault detection method is evaluated by simulation and
presented in detail in Section IV. Finally, the paper concludes
in Section V with a summary of the study’s key findings and
a discussion of future research efforts.

II. PAIR-WISE LINEAR RELATIONSHIPS IN LINEAR

SYSTEMS: FOUNDATION FOR FAULT DETECTION

This section lays a theoretical foundation for the sensor
fault detection methodology to be described in Section III.
Consider a set of wireless sensors attached to a time-invariant
physical system. Since sensor responses all depend on the
common physical system, a linear relationship exists between
the system outputs measured by these sensors. This relation-
ship can then be exploited to evaluate the “correctness” of the
sensor measurements. Specifically, sensors can pair up and
check whether their outputs are consistent with this linear
relationship; inconsistencies can then be used to determine
whether one or both of the sensors may be faulty. This pair-
wise comparison can be performed between any pair of sensors
and only the result of the comparison needs to be conveyed
to the base station or a central processing node in the WSN.
For the purpose of conserving energy in the WSN, sensors are
generally grouped within close proximity of each other.

The structure of the proposed algorithm is illustrated in
Fig. 1. The algorithm can be separated into a training (also
called “model parameter identification”) phase and a detection
phase. During the training phase, each sensor node learns
the relationship between itself and each of its neighbors. For
example, in Fig. 1(a), sensor 2 broadcasts its measurement data
to neighbouring sensors 1 and 3. After the data is received,
sensors 1 and 3 calculate the relationship between their outputs
and sensor 2’s output [Fig. 1(b)]. This model parameter
identification processes is performed by each sensor one after
another and the results are stored locally, as shown in Fig. 1(c).
During the detection phase, the network is partitioned into
pairs of neighboring sensors; this can be done centrally or in a
distributed fashion. Each pair of sensors then performs a com-
parison according to their trained relationship. Fig. 1(d) shows
a network partitioned into 3 pairs: {1, 2}, {2, 3} and {4, 5}. For
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Fig. 1. During training: (a) each sensor broadcasts its output, (b) linear
relationship between sensor pairs is calculated, and (c) finally pair-wise linear
relationships of the network are constructed. For fault detection: (d) base
station divides the sensor network into pairs, (e) each pair performs the fault
detection method, and (f) each pair sends their results, e, back to the base
station (B.S.).

example, consider sensor pair {1, 2}. Sensor 2 first transmits
its output to its partner, sensor 1. Sensor 1 then checks whether
its measured output agrees with the output predicted by the
previously trained relationship [Fig. 1(e)]. Finally, each sensor
pair will report its results to the base station [Fig. 1(f)]. In this
architecture, fault detection is executed locally and only the
diagnostic results need to be sent to the base station, thereby
drastically reducing the communication cost in the multi-hop
communication network. With computation and communica-
tion requirements distributed over the entire network, the WSN
is more scalable to larger node counts while consuming less
energy. The relationship between sensor outputs, yp = f (yq)
is now derived. To simplify the discussion, the relationship
is established between two sensors but the derivation can be
generalized to sets of sensors. Consider a physical system that
is represented mathematically by the following deterministic
state space model

x(k + 1) = Ax(k) + Bu(k)

y(k) = C x(k) + Du(k), (1)

where x(k) ∈ R
n is the state vector of the system, u(k) ∈ R

l

is the input vector, and y(k) ∈ R
m is the output vector of the

sensors. Furthermore, A ∈ R
n×n is the state transition matrix

which defines the transition of system states, B ∈ R
n×l is

the input matrix which represents the relationship between the
input and the system state, C ∈ R

m×n is the output matrix, and
D ∈ R

m×l is the feed-through matrix. In the remainder of this
paper, time-invariant is assumed. The system is also assumed
to be stable, i.e., the output of the system, y, is bounded when
the system input, u, is bounded.

Taking the Z-transform of (1), the discrete-time frequency
domain representation is derived:

z X(z) = AX(z) + BU(z)

Y(z) = C X(z) + DU(z). (2)

Eliminating X(z) in the second equation of (2) using the
first equation of (2), resulting in the following expression:

Y (z) = (C(z I − A)−1 B + D)U(z). (3)

For the pth sensor, the individual observation model is

Yp(z) = (C p(z I − A)−1 B + D p)U(z) (4)

where C p and D p are the pth rows of the matrices C and D,
respectively. As a result, the transfer function Hpq(z) between
the outputs of sensor p and q is:

Hpq(z) = Yp(z)

Yq (z)
= (C p(z I − A)−1 B + D p)U(z)

(Cq(z I − A)−1 B + Dq)U(z)
. (5)

The above expression shows that there exists a linear
relationship between any pair of sensors. If the expression
(C p(z I − A)−1 B + Dp) ∈ R

1×l is expressed as a polynomial
function of z, then the i th element of the vector can be
expressed as

∑n
j=0 αi j z j , where n is the rank of (z I − A)−1

and the coefficients αi j , i = 1, . . . , l, j = 1, . . . , n, are
determined by the various state space matrices (i.e., A, B, C
and D). Similarly, the i th element of (Cq(z I − A)−1 B + Dq)
can be expressed as

∑n
j=0 βi j z j . Let UT (z) = [U1, · · · , Ul ],

and the transfer function (5) can be written as:

Yp(z)

Yq(z)
=

n∑

j=0

(
l∑

i=1
Uiαi j

)

z j
)

n∑

j=0

(
l∑

i=1
Uiβi j

)

z j
)
. (6)

Notice that this relationship depends on the system input U .
The input driving the system dynamics may be known or can
be measured by sensors; in other cases, it can be difficult to
obtain. However, if the excitation of the system can be aggre-
gated as a single source (i.e., as a scalar time-history function),
then l = 1 and U in the numerator and denominator cancel
each other. Thus the dependence on the system input in (5)
is eliminated. Hence, a linear relationship uniquely defined by
the physics of the system and the sensors measurements can
be obtained:

Yp(z)

Yq(z)
= αnzn + αn−1zn−1 + · · · + α1z + α0

βnzn + βn−1zn−1 + · · · + β1z + β0
. (7)

Reduction of the system input to a single source is quite
common in many engineering systems. For example, mechan-
ical systems excited by ambient, white noise processes and
civil engineering structures exposed to base motion (i.e., earth-
quakes), would all be modeled by a single excitation source. In
order to simplify the discussion, the scalar system input case is
considered in the remainder of the paper. Note however that
the following derivation and discussion remain valid under
multi-input systems if they are known (or measurable) and
α j (and β j ) is replaced with

∑l
i=1 Uiαi j (and

∑l
i=1 Uiβi j )

in (7).
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Both yp and yq correspond to system outputs. However,
if yp is viewed as the output while yq is viewed as the
input of another, unspecified system, then (7) is essentially
the Z-domain representation of an autoregressive with exoge-
nous input (ARX) time-series model [20]. ARX(n, m) is a
linear time series model with n output terms (autoregressive
terms) and m (exogenous) input terms. It is widely used to
model various types of systems and natural phenomena. The
definition of an ARX model is :

m∑

i=0

αi yq(k − i) =
n∑

i=0

βi yp(k − i). (8)

The above derivation shows that the relationship between
the outputs of two sensors is precisely captured by the ARX
model, which is defined by of coefficients αi and βi . This
ARX model (αi and βi ) can be acquired by first storing the
output pairs, yp and yq over a certain period of time when
sensors work under normal conditions and then αi and βi

are calculated from the stored data through standard least
square calculations [20], [21] or through the iterative Burg’s
method [22]. Even if the historical data are corrupted by
(zero mean) Gaussian noise, these training methods are able
to extract accurate model coefficients. This is because when
the size of the historical data is large enough, least square
calculation or Burg’s method is able to eliminate the variance
of the noise in the data. Therefore, the ARX model training
is insensitive to noise existing in the training data. After the
training, only the ARX model coefficients αi and βi need to be
stored for use in future fault detection. The length of the time
history needed is equal to the dimension of the state x of the
original state space model in (1). Consequently, the number of
coefficients n of the ARX model should be equal to or larger
than the size of the state dimension.

In terms of computational complexity on wireless sensors,
the training of ARX coefficients requires O(ν2 N) operations
for the least square method and O(νN) operations for Burg’s
method as stated in [23] and [24], respectively, where ν is the
number of ARX coefficients and N is the number of training
data samples. The ARX training with Burg’s method has been
implemented in field deployed WSNs by Lynch, et al. [25],
where 8.351 seconds of execution time and 3.031J power
consumption are reported for training with ν = 30 and
N = 4000 by a Power PC embedded 32-bit microprocessor
(Motorola MPC555). This is feasible in WSNs as the need
for ARX model training is usually infrequent. The detection
process of the proposed algorithm requires O(νN ′) operations
as indicated in the next section (where N ′ is the number of
data points to be detected). The detection process is expected
to be significantly faster than the training process.

The ARX model representation of the relationship between
sensor pairs is extremely valuable and will be exploited fully.
While (7) provides a closed-form analytical expression for the
relationship between sensor pairs, it would require an accurate
representation of the system in the form of a state space model
(i.e., knowledge of A, B, C , and D). In contrast, the equivalent
ARX model in (8) can be determined after the network has
been deployed only using sensor outputs yp and yq . After an
ARX model has been determined between two sensors, the

model is stored locally in each wireless sensor in the form of
the model coefficients, αi and βi .

III. SPIKE ERROR DETECTION USING ARX MODELS

In the previous section, it was shown that an ARX model
can accurately represent the linear relationship between sensor
outputs when the number of coefficients is equal to or larger
than the dimension of the system state, n. In this section, the
actual sensor fault detection methodology based on ARX mod-
els is presented. A spike fault is a voltage spike (or impulse)
superimposed on the sensor measurement. Spikes typically
occur randomly in time and can be constant or of varying
magnitude. Here, it is assumed that each sensor can potentially
suffer from a spike fault and that there are no reference
(i.e., known faultless) sensors at the time of execution. The
spike error could occur randomly at any time and on any
sensor. It is assumed that the duration of a spike error is short
and the occurrence of these spike errors is sparse (i.e., the
probability that the spikes occur consecutively is low). The
precise definition of sparsity to be used herein is given by:
the spikes occur independently at each time instance with low
probability (5% or less)

As shown in the previous section, using the ARX model
allows the outputs of two sensors, y1 and y2 to be related
through the use of coefficients αi and β j :

m∑

i=0

αi y1(k − i) =
n∑

j=0

β j y2(k − j). (9)

To simplify the expression, the coefficient values are nor-
malized by letting ai = αi

α0
and b j = β j

α0
for i = 1, . . . , m,

j = 0, . . . , n. Moreover, as in the rest of the paper, the model
is assumed to have the same number of coefficients for y1 and
y2 (i.e., m = n). Now, y1 can be represented as a function of
past outputs and the current and past outputs of y2:

y1(k) =
n∑

i=1

−ai y1(k − i) +
n∑

j=0

b j y2(k − j). (10)

The relationship of sensor outputs as provided by (10)
will serve as the basis for determining if a sensor is faulty.
Specifically, two error functions are defined. The first error
function denoted by e1(k), is the difference in sensor 1’s actual
output ỹ1(k) and ideal output without the fault y1(k), i.e.,
e1(k) = ỹ1(k) − y1(k); the error function e2(k) is similarly
defined. The second error function is the cross-error function
denoted by e12(k). This is the difference between the observed
output from sensor 1, ỹ1(k), and the estimated output of sensor
1 (based on use of the ARX model using time-history data
from sensor 1 and 2), ŷ1(k):

ŷ1(k) =
n∑

i=1

−ai ỹ1(k − i) +
n∑

i=0

bi ỹ2(k − i). (11)

The estimated output ŷ1(k) is stable due to the fact that,
unlike a classical observer, there is no feedback of the estima-
tion error. Moreover, ŷ1(k) is a one-step estimator with inputs
solely based on the sensor measurements of a stable system.
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The cross-error function can then be stated as:
e12(k) = ỹ1(k) − ŷ1(k) (12)

e12(k) = (y1(k) + e1(k))

−
( n∑

i=1

−ai (y1(k − i) + e1(k − i))

+
n∑

i=0

bi(y2(k − i) + e2(k − i)

)

(13)

e12(k) = e1(k) +
n∑

i=1

ai e1(k − i) −
n∑

i=0

bi e2(k − i). (14)

It should be noted that (14) can be rewritten in a compact
form using vector notation:

e12(k) = aT e1(k) − bT e2(k)

where aT = [1, a1, a2, . . . , an], bT = [b0, b1, . . . , bn], and
eT

1 (k) = [e1(k), e1(k −1), . . . , e1(k −n)], with eT
2 (k) similarly

defined.
The cross-error function consists of a weighted summation

of errors from a pair of sensors over a period of time. In
general, the cross-error function gives zero values when there
is no faults within the two sensors in a designated pair (i.e.,
they agree with each other) and gives non-zero values when
any kind of faults (e �= 0) exist. However, it is difficult to deter-
mine which sensor is faulty and what type of fault is present
based solely on the cross-error function. In particular, if e1
and e2 represent the sensor measurement noise which is i.i.d.
Gaussian distributed, e12 provides information of the noise
characteristic of the sensors. For instance, if the Gaussian dis-
tribution (mean, variance) of the measurement noise of sensor
1 and 2 are (μ1, σ 2

1 ) and (μ2, σ 2
2 ) respectively, the distribution

of e12 is Gaussian with mean equals to
∑n

i=0(aiμ1 − biμ2)
and variance equals to

∑n
i=0(a

2
i σ 2

1 + b2
i σ

2
2 ). If the error is

due to a spike (with amplitude d) in one of the sensors, say
sensor 1, at time k − i, then e1 will be a perfect impulse
function with zero entries except for the component at k − i
of magnitude d [Fig. 2(a)]. When sensor 2 is fault-free, e12
will be equal to ai d at component k − i according to (14).
As a result, a spike in sensor 1’s output produces a cross-
error function e12, proportional to the ARX coefficient vector,
a [Fig. 2(b)]. Similarly, if a spike occurred in sensor 2 and
no spike error occurred in sensor 1, the cross-error e12 will
be proportional to the ARX coefficients b [Fig. 2(c)]. When
both sensors have spike errors, the cross-error function e12
will be equal to the sum of ARX coefficients a and b with
appropriate proportionality [Fig. 2(d)]. This insight provides
a method for identifying spikes in the cross-error function
and to classify the sensor fault type (i.e., no faults, sensor 1
faulty, sensor 2 faulty and both sensors faulty). In addition, this
method allows the fault to be identified in time. The detection
performance depends on the baseline ARX coefficient vectors
a and b which can be divided into 2 cases.

Case1: a �= cb where c ∈ R. For case 1, coefficient a
is not proportional to b. As the cross-error function of a
spike signal carries the characteristics of the ARX coefficients,
detecting spike errors is similar to detecting a target signal

(a)

(b)

(c)

(d)

Fig. 2. Description of cross-error functions due to spike faults. (a) Superpo-
sition of a spike fault on a sensor output, (b) sensor 1 exhibits a spike fault,
(c) sensor 2 exhibits a spike fault, and (d) both sensor 1 and 2 exhibit spike
faults.

with a known waveform but with unknown amplitude and
delay. In the telecommunication field, one popular method to
detect signals under a binary hypothesis is to use matched
filtering [26]. It convolves the received unknown signal with
a filter which is the same as the target signal. When the target
signal arrives, it will “match” with the filter and yield a high
output. To identify spike errors, the cross-error function can
be passed through two matched filters which have coefficients
equal to a and b, respectively. The spikes can have either
positive or negative magnitude; this information is unknown
to the system. As a result, only the absolute value of a matched
filter’s output are considered.

Consider the cross-error function e12(k) with measurement
noise, ξ , which is additive from both sensors’ noise processes.
Assume there is a spike error on sensor 1 at time j (e1(k) = 0
for k �= j ) and a spike error on sensor 2 at time l (e2(k) = 0
for k �= l), the cross-error function (14) becomes:

e12(k) =
n∑

i=0

ai e1(k − i) −
n∑

i=0

bi e2(k − i) + ξ(k) (15)

e12(k) = ak− j e1( j) − bk−l e2(l) + ξ(k). (16)

If we treat the ARX coefficients a and b as the matching filter,
then the output of the matched filters, defined as matched error
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function ea
12 and eb

12 respectively, at time k are:

ea
12(k) =

∣
∣
∣
∣
∣

∞∑

i=−∞
ai−ke12(i)

∣
∣
∣
∣
∣

(17)

eb
12(k) =

∣
∣
∣
∣
∣

∞∑

i=−∞
bi−ke12(i)

∣
∣
∣
∣
∣

(18)

where ai = 0, bi = 0 when i < 0 or i > n (i.e., outside the
range of the filter).

Replace e12(i) with (16) in (17):

ea
12(k) =

∣
∣
∣
∣
∣

∞∑

i=−∞
ai−k(ai− j e1( j) − bi−l e2(l) + ξ(i))

∣
∣
∣
∣
∣

(19)

ea
12(k) =

∣
∣
∣
∣
∣

∞∑

i=−∞
(ai−kai− j e1( j) − ai−kbi−l e2(l)

+ ai−kξ(i))

∣
∣
∣
∣
∣
. (20)

Equation (19) is dominated by the first two terms if the
spike errors (e1, e2) have much larger magnitude than the
measurement noise ξ . Also, the first term is maximized when
k = j and this maximum value is always bigger than the
second term if ‖a‖2 ≈ ‖b‖2 and e1( j) ≈ e2(l). This means
that if a spike error appears in sensor 1, it will be enlarged by
matched filter a to result in a large value in ea

12 and suppressed
by matched filter b to result in a small value in eb

12. The
reverse holds true for a spike error in sensor 2. As a result,
the fault detection algorithm can detect peaks in the function
and discriminate the corresponding spike error in sensor 1 and
sensor 2, respectively. Moreover, the matched error function
can locate exactly when the spike error occurred.

The following shows the computation complexity of the
detection process. Let ν be the number of ARX coefficients
and N ′ be the number of data to be detected. From (11) and
(12), the complexity for calculating the cross-error function for
N ′ data is O(νN ′). Similarly, the complexity for calculation
the matched filter outputs [(17) and (18)] for N ′ data is
O(νN ′). Therefore, the overall complexity for the detection
process is O(νN ′).

Case2: a ≈ cb where c ∈ R. When a and b can be related
as a ≈ cb for some constant c ∈ R, the transfer function of Y1

Y2
will be close to c. This means that the outputs of sensor 1 and
sensor 2 are highly correlated to each other. For these systems,
the proposed fault detection algorithm can detect a spike fault
which has occurred in the sensor pair, but is not able to decide
which sensor the spike fault belongs to. Intuitively, this is
because the characteristic waveforms of the spike error in the
cross-error function corresponding to sensor 1 and sensor 2
will have the same shape. Hence, the separating ability of the
matched filter is lost. Although the magnitude and sign of the
waveforms (which depend on the magnitude, d , and sign of
the spike errors) are different and thus have different matched
filter outputs, these outputs are not useful in identifying a
faulty sensor since the sign and magnitude of the spike error
is not known a priori. However, the detection algorithm does

at least know a spike error has occurred because the cross-
error function still carries the characteristics of the ARX
coefficients and is thus not equal to zero. In fact, the output
of sensors being highly correlated is equivalent to having
hardware redundancy. If a pair of sensors gives contradicting
outputs, the algorithm is not able to tell which sensor is
abnormal (without knowing which sensor is normal).

For the case a ≈ cb, it is possible that the method fails
to tell there is a spike error within the sensor pair when
both sensors have spikes at the same time with appropriate
magnitude. For example, if the system output at sensor 1 is
proportional to the system output at sensor 2, y1(k) = cy2(k),
and the spike errors are e1(k) = m and e2(k) = cm, then the
cross-error function e12(k) = aT e1 − bT e2 = 0. Therefore,
both matched filters will give zero results, which means no
error is detected. In other words, if both sensors have faults
such that their faulty outputs agree with each other, the method
is unable to detect either error solely by evaluating the two
sensor outputs.

Although there are limitations to the proposed detection
algorithm, it should be mentioned that these limitations are
neither common nor important cases. Having highly correlated
sensors deployed in the same system is in general not cost
effective because the output of one sensor is just a scale of
the other. Also, the case where the algorithm is completely
ineffective (i.e., when both sensors have spike errors at the
same time instance with appropriate magnitude) has a very
low probability of occurring because spike errors due to loose
electrical contacts or electro-magnetic wave occur randomly.

Once spike errors are detected, the detection algorithm also
provides a method to correct these errors. Recall that the
coefficient a0 is normalized to 1. The cross-error function,
therefore, is directly representing the magnitude of the spike
error if signals used in prediction ŷ(k) are not corrupted by
other spike errors and the sensor does not have background
noise. Moreover, the matched error functions, ea

12 and eb
12,

reveal the position of the spike errors. As a result, the spike
error can be eliminated easily.

IV. SIMULATION AND RESULTS

This section verifies the performance of the proposed ARX-
based sensor fault detection method. These simulations will
explore the accuracy of the methodology with respect to: the
magnitude of the spike fault, the frequency of spike fault
occurrence, and the type of sensor measurement.

A. Simulation Settings

A generic lumped mass dynamical system will be adopted
to simulate a physical system such as a bridge, vehicle,
etc. Fig. 3 presents a five degree-of-freedom (DOF) lumped
mass dynamical system whose degrees-of-freedom are denoted
as x1(k) through x5(k). The masses, mi , are connected via
discrete springs and viscous dampers with spring constants,
ki , and damping coefficients, ci , respectively. An external
force, ui (k), is applied to each mass. The model parame-
ters used in [14] are adopted in this paper. Each mass is
set to be 1kg with each spring constant set to 10k N/m.
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Fig. 3. Five DOF spring-mass-damper system for methodology validation.

TABLE I

SIMULATION EXCITATIONS

Excitation Training Testing
Single-tone harmonic

Solid line (Red) Squarew̄ = [10 40]rad/sec
|Umax| = [10 13]N

Double-tone harmonic

Dotted line (Blue) Star
w̄1 = [10 40] rad/sec

w̄2 = [100 150] rad/sec
|Umax| = [10 13]N

White Gaussian signal
Dash-dot line (Black) Triangle

variance(σ 2 ) = 100 N

Similarly, each viscous damper has its damping coefficient set
to 10.5 N sec/m. The natural frequencies of the dynamical
system are: 4.52, 13.22, 20.84, 26.78, and 30.54 Hz. Each
mode of vibration response is under-damped with damping
ratios of 1.5%, 4.4%, 6.8%, 8.8%, and 10.1% for mode 1
(4.53 Hz) through 5 (30.54 Hz), respectively. The system is
observed using either displacement sensors (i.e., yi = xi )
or accelerometers (i.e., yi = ẍi ) at each degree-of-freedom.
The system is excited by three sources of excitation. For
the first excitation, a harmonic load is applied identically
to each degree-of-freedom defined by a single frequency
(w̄: uniformly distributed between 10 and 40 rad/sec) and with
a random amplitude (|Umax|: uniformly distributed between
10 and 13 N) and offset. For the second excitation, the
external load is again harmonic but with two major frequencies
(w̄1: uniformly distributed between 10 and 40 rad/sec and
w̄2: uniformly distributed between 100 and 150 rad/sec).
The amplitude associated with both tones is also random
(|Umax|: uniformly distributed between 10 and 13 N). The
third excitation is a white noise source with a variance of
100 N identically applied to each degree-of-freedom. Table I
summarizes the excitations used; all three are used for training
ARX models and for spike fault detection validation. For each
single simulation, the parameters of the excitation are ran-
domly chosen and fixed through out that simulation. It should
be noted that the excitation, even of the same type, are different
(i.e., generated separately) for training and testing simulations.

For the training of the ARX pair-wise time series mod-
els, all three excitation types are utilized with a unique
ARX model found for each excitation and measurement type.
A validation analysis is done to determine the optimal number
of coefficients [21]. Here, the model order is set to 25 ai

coefficients and 25 bi coefficients. As previously mentioned,
the coefficient a0 is set to 1.

In the simulations, the system is excited by the external exci-
tation and the system response is measured at each degree-of-
freedom, yi . Random Gaussian noise is added to all measured
responses to simulate a low level of sensor measurement noise.
To emulate sensor spike faults, spikes are introduced to the
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Fig. 4. Response of m1 and m2 under a two tone harmonic excitation.
(a) Fault-free displacement time history and (b) same displacement time his-
tories with spike faults (40% of the maximum response amplitude) randomly
introduced.

measurements of degree-of-freedom one and two with random
sign and magnitude. For example, consider the fault free
sensor response at m1 and m2 under the two-tone excitation
as shown in Fig. 4(a). An example of the two time histories
with simulated spike faults with the actual spikes denoted is
shown in Fig. 4(b). Each time history in Fig. 4 has 4% noise
(with respect to the signal variance) introduced. To determine
the accuracy of the proposed sensor fault detection algorithm,
the detection rate is used as a metric. Detection rate is the
percentage of spikes to be correctly identified by the algorithm.
This is equivalent to the percentage of true-positives; related
metric would be the percentage of false-positives.

For illustrative purposes, consider the measured displace-
ment of mass m1 and mass m2 denoted in Fig. 4(b). Using
the ARX pair-wise model between y1 and y2, the output at
m1 is predicted by the output at m2. The difference in the
predicted and measured output, e12, is plotted in Fig. 5(a).
As can be seen, the spike faults in both outputs is creating
non-trivial elevations in e12 in the vicinity of the actual faults.
However, which sensor in the pair is experiencing the faults
cannot be determined by the cross-error function alone. Rather,
the use of the matched filters is needed to determine which
sensor has the fault and where in time the faults are located.
Use of (17) and (18) are used to determine ea

12 and eb
12 in

Fig. 5(b) and (c), respectively. As can be seen, the convolved
error function reveals when the spike faults occur. To identify
the spikes, a threshold level is defined. Any disturbance
that is larger than the threshold will be declared as a spike
error of the corresponding sensor. For example, ea

12 exceeding
a defined threshold corresponds to faults in y1 while
exceedance of a threshold in eb

12 corresponds to faults in y2.
For all the simulations presented, the threshold is determined
by the following steps. First, the cross-error function, ei j , is
calculated by the trained ARX model for a pair of normal
(fault-free) sensors. The cross-error function is not expected
to be equal to zero because there exists observation noise in the
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Fig. 5. (a) Cross-error function between sensor 1 and 2 corresponding to out-
puts presented in Fig. 4(b), (b) error function convoluted with coefficients a,
and (c) error function convoluted with coefficients b.
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Fig. 6. Detection rate of spike faults versus different spike amplitudes when
measuring displacement.

sensors and the ARX model will also have some prediction
error. Afterward, the cross-error function is passed through
the two matched filter and the variance of the ea

i j and eb
i j

calculated. The threshold is set to be 6 times the standard
deviation of the convoluted error function of the fault-free
sensors such that the false alarm rate caused by the sensor
measurement noise is almost zero.

B. Simulation Results Under Various Scenarios

Simulations are carried out to evaluate the detection rate
of spike errors versus different spike error amplitudes when
measuring the acceleration and displacement response of the
spring-mass-damper structure. These simulations considered
the three different combinations of system excitations for both
training and testing (validation). The legends of the different
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Fig. 7. Detection rate of spike faults versus different spike amplitudes when
measuring acceleration.

excitation combinations for Figs. 6–10 are summarized in
Table I. For example, if the system response to the single-
tone sinusoidal excitation is used during training and white
Gaussian noise excitation is used during performance testing,
a red solid curve with triangle markers is used for the detection
curve. In the simulations, the sensor noise is set to 10% of
the sensor output variance. As can be seen for both displace-
ment (Fig. 6) and acceleration (Fig. 7) outputs, the detection
accuracy of the proposed method increases with the amplitude
of the spikes. This is an obvious finding because smaller
amplitude spike faults are more likely to be obscured by the
sensor noise and thus more difficult to identify. Fig. 6 presents
the detection rate when the sensors measure the displacement
of the masses in the spring-mass-damper system. The results
show that the detection algorithm performed well in all system
input combinations. For large spike faults such as those whose
amplitudes were 60% or greater than the signal amplitude, the
sensor fault detection rate of the algorithm was high (>90%)
regardless of the excitation used to train ARX models or
when determining the sensor faults. However, for smaller spike
amplitudes, the method accuracy exhibits some dependency
on the nature of the excitation used to train the ARX models.
In general, ARX models trained from white noise excitations
provided the best baseline models. Especially when used to
determine sensor spikes from similarly broadband excited
time-history outputs, even small spikes (e.g., spikes white
amplitudes only 25% of the signal amplitude) can be detected
with detection rates in exceedance of 98%. Even for systems
excited by harmonic loads, sensor faults with spike to signal
amplitudes of 0.3 have detection rates of 90% or greater. In
the absence of white noise excitations, the more broadband
an excitation is, the better suited it is for the training of
the ARX relationships between sensor pairs. For example,
Fig. 6 shows that the ARX models created using the response
of the system to the double tone harmonic excitation were
more effective compared to those created using the single tone
harmonic response.

When measuring displacement, the ARX models fall into
Case 1 as discussed in Section III (i.e., a �= cb where
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Fig. 8. Detection rate of spike faults versus different spike amplitudes
when measuring acceleration. The viscous damping constant is decreased from
10.5–0.6 N sec/m.
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Fig. 9. Detection rate of spike faults versus different levels of sensor
observation noise when measuring displacement. Spike is fixed at 30% of
the maximum peak-to-peak amplitude of the sensor measurement.

c ∈ R). In contrast, when measuring acceleration of the
system, the system outputs are more correlated. This fact is
confirmed when investigating the ARX model coefficients of
relationships trained between various system outputs. With
a ≈ cb, the detection accuracy of the method decreases. For
example, Fig. 7 presents the detection rate when the sensors
measure the acceleration of the system. The performance of
the sensor fault detection method in this setting is similar to the
one measuring displacement except that the combinations in
which Gaussian white noise is used as a training signal appear
to perform worse with detection rates significantly lower than
the other input combinations. When the system is excited by
Gaussian white noise, its acceleration response exhibits the
greatest correlation resulting in the lowest detection accuracy.
While the detection algorithm is able to detect that faults exist
in the sensor pairs, it is not able to classify which sensor the
fault belongs to resulting in low detection rates.

To verify the deteriorated performance presented in Fig. 7 is
due to strong correlation in the measured system response, the
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Fig. 10. Detection rate of spike faults versus different percentage of coincide
spike error on both sensors.

viscous damping coefficient of the spring-mass-damper system
is reduced from ci = 10.5 Nsec/m to ci = 0.6 N. All the
other model parameters remain the same (i.e., mi = 1 kg and
ki = 10 kN/m). ARX models fitted to the new acceleration
data shows a �= cb resulting in a Case 1 system. The detection
rate results are shown in Fig. 8, with the detection rate similar
to that when using displacement outputs (Fig. 6).

Next, the accuracy of the sensor fault detection algorithm is
quantified for noisy sensor measurements. Here, the original
system is used (i.e., ci = 10.5 N sec/m). Fig. 9 shows the
detection rate of spike errors versus different levels of sensor
observation noise while measuring the displacements of the
system degrees-of-freedom. The magnitude of the spike errors
are fixed at 30% of the maximum peak-to-peak amplitude of
the sensor outputs. As can be seen, the detection accuracy
deteriorates when the sensor noise exceeds 20% in all cases.
When noise increases, the response of the spike error in the
matched filter output will be increasingly dominated by noise.
As a result, it is harder to set a good threshold for detection
since the threshold must rise to be above the noise level.

Finally, the performance of the fault detection algorithm is
investigated under scenarios of sensor faults occurring at the
same time on both sensors in a pair. During this simulation,
system displacements are measured with sensor noise fixed at
10% of the sensor output variance. Fig. 10 investigates the
situation when spike faults happen at the same time on both
sensors. The sign and magnitude of spikes are random in this
simulation. The plot shows the detection rate as a function of
the percentage of spike errors that happen at the same time
on both sensors. Although the spike errors of different sensors
have different characteristic waveforms and match to different
matched filters, the coincident occurrence of spike errors still
affects the detection performance. Due to faults occurring at
the same time, the characteristic waveform on the cross-error
function can be partially canceled out by the other spike with
appropriate sign. As a result, the detection accuracy decreases
(slowly) with the rate of coincidence. However, it should be
noted that the overall performance of the algorithm is still high
(>0.8 detection rate for most cases).
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Fig. 11. Tradeoff between the sensor fault detection method’s detection rate
and false alarm rate with different threshold levels.

In all of the simulations presented, the threshold level is
set to prevent false alarms. Hence, most of the errors in
the detection algorithm are misses. In fact, higher detection
rates can be achieved if false alarms can be tolerated by
changing the threshold level. Fig. 11 illustrates the trade off
between the detection rate and false alarm rate with different
thresholds. The magnitude of the spike errors are fixed at
30% of the maximum peak-to-peak amplitude of the sensor
outputs and the sensor noise is set to 10% of the sensor output
variance. The rest of the simulation settings are the same as
the simulation shown in Fig. 6. The threshold level is the
multiplier of the variance of the convoluted error function of
the fault-free sensors. As can be seen, lowering the threshold
level can increase the detection rate while the false alarm rate
also increases rapidly.

The rest of this section shows the performance of the
proposed method on sensor data from a field-deployed WSN.
A previous study was conducted focused on reducing the cost
and installation complexity of monitoring systems on ships;
wireless sensors were proposed by Swartz, et al. [27] as an
alternative to traditional wired sensors. A monitoring system
consisting of 20 wireless sensors were installed on a U.S.
Navy ship in 2008. Moreover, a traditional wired hull mon-
itoring system was installed in the ship alongside the WSN.
During sea trails, some of the wireless sensors suffered from
spike errors and excessive noise. Consider two wired sensors
measuring hull strain shown in Fig. 12; these sensors were
from the wired monitoring system and are generally fault-free
(i.e., no spikes, etc.) Two wireless sensors in the WSN were
collocated with these wired sensors and had spike errors and
noise. These faulty sensors are used to illustrate the sensor
fault detection algorithm in this paper. An ARX model of
order n = 30 is trained using 60 seconds (6000 points) of the
spike free signals from the two wired sensors. With the trained
ARX coefficients, 270 seconds (27000 points) of strain signals
from the wireless sensors with spike errors are examined
by the proposed method. Part of the signals (3000 points)
of the two wireless sensors are shown in Fig. 13(a) (sensor s1)
and (c) (sensor s2). The spikes detected by naked eye are
marked by squares in Fig. 13(a) and (c). The output of
the matched filters is shown in Fig. 13(b) and (d), and the
automatically detected spikes are marked in stars. As can be
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Fig. 13. (a) and (c) Strain signals form wireless sensors with spike errors
and (b) and (d) the corresponding output of the matched error function.

seen, 21 out of 25 (84%) spikes were detected with 2 false
alarms. For the examination of 27000 data points, 83.3% of
spikes were detected (194 out of 233) and the false alarm rate
is 0.04%. This level of accuracy is regarded as impressively
high for actual field deployed wireless sensors with moderate
amounts of noise.

V. CONCLUSION

An ARX-based spike fault detection method which does
not require the system-input information or the a priori
establishment of reference sensors is proposed for LTI physical
systems. The method is based on pair-wise relationships
of sensors, and these relationships are learned online when
the system is functioning normally. Moreover, the proposed
method is able to identify all of the faulty sensors. Single-
excitation systems are considered in this paper but the same
approach can be used for multiple-excitation systems if the
excitation inputs are known. Because the detection is done on
a pairwise basis, it is well suited for WSNs in which power
and communication resources are limited. In the simulations
conducted, the detection accuracy exhibited dependency on
the magnitude of the spikes, the sensor observation noise, the
ARX coefficients and the threshold set for spike detection after
the matched filter. The algorithm gives good performance; it
only loses part of its effectiveness under situations where a



LO et al.: DISTRIBUTED REFERENCE-FREE FAULT DETECTION METHOD 2019

pair of sensors is highly correlated. However, such situations
are either unlikely in practice or can be avoided when pairing
sensors for execution of the proposed method.

Further research will be done to develop a method to sepa-
rate other types of faults based on ARX coefficients. Moreover,
the system itself was assumed healthy in the analysis. If the
system fails gradually, then the system becomes time variant.
In such cases, the ARX models could be updated periodically
if it is known that the sensors are functioning properly (i.e., not
faulty). If the trained system model deviates from normal, it
means faults may have occurred in the system. Given a system
fault, the detection algorithm will indicate some sensors have
errors but it will know if these errors are due to spikes or not.
Because the matched filters were designated to pick up spikes,
other errors will simply appear as noise, or small fluctuations.
However, further analysis is needed to determine whether the
error is from a sensor fault or from a damaged system.
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