
2.7 Perfectly Lossless Fixed-Length to Variable-

Length Block Source Codes

To obtain lower rates than perfectly lossless FFB source codes, in Sections

2.5 and 2.6 we relaxed the perfectly lossless requirement and considered al-

most lossless FFB source codes. In this section we maintain the perfectly

lossless requirement, but relax the FFB requirement | allowing the code-

words to have di�erent lengths | again with the goal of obtaining lower

rates. Speci�cally, we consider �xed-length to variable-length block (FVB)

codes, which are similar to a �xed-length to �xed-length block (FFB) codes ex-

cept that the codebook C contains codewords of varying lengths. Although

the varying length nature of the codewords complicates the encoding and

decoding somewhat, it turns out that perfectly lossless FVB codes with a

given source length can perform as well as almost lossless FFB codes with

much larger source lengths. And this ordinarily translates into much lower

complexity and implementation cost.

Example 2.7.1 Consider the encoding table shown below for an IID sourceeU with alphabet AU = fa; b; cg, probabilities pa = 1=2, pb = 1=4, pc = 1=4,

and entropy H = 1:5.

u z = fe(u)

a 0

b 1 0

c 1 1

For example with this encoding table, the source sequence U = aabcbac is

encoded into z = 00101110011. It is easy to see that after encoding any

source sequence, the bits produced by this encoding table can be decoded into

the original source sequence; i.e., the code is perfectly lossless. It is also easy

to see that on the average this code produces 1:5 bits per source symbol, which

is its rate and which equals the entropy of the source. In comparison the best

perfectly lossless FFB codes with source length one have rate dlog2 3e = 2,

and the best perfectly lossless FFB codes with any source length have rates

approaching log2 3 = 1:58 bits per source symbol. Although almost lossless

FFB codes can attain rate arbitrarily close to the entropy, which is 1.5 bits

per source symbol, they require a large source length and, consequently, a

much larger codebook and much larger implementation complexity. 2

In general, a perfectly lossless FVB code is characterized by its source

length K, its codebook C = f v1; v2; : : :, vQK g, where the ith codeword vi =

Section 2.7 2-26

(vi1; vi2; : : : ; viLi) is a binary sequence with length denoted Li; its encoding

rule fe assigning codewords in C to source sequences of length K, and its

decoding rule fd assigning source sequences of length K to codewords. As

with an FFB code, the encoder operates in \block fashion". It applies fe to

the �rst block, U1 = (U1; : : : ; UK); produces a binary sequence denoted Z1 =

fe(U1; : : : ; UK), then applies fe to the next block, U2 = (UK+1; : : : ; U2K);

produces the binary sequence Z2 = fe(UK+1; : : : ; U2K), and so on.

Although the code is considered a \block" code, the decoder does not

operate in the usual block fashion. For simplicity and, as it turns out,

without loss of potential performance, we will assume that the codebook

C has the pre�x-free property that none of its codewords is the pre�x of

another. (A sequence v = (v1; : : : ; vm) is called a pre�x of another sequence

w = (w1; : : : ; wn) if n � m and wi = vi, for i = 1; : : : ; m.) From now on

we shall refer to C as a pre�x codebook and to the resulting code as a pre�x

code.

The decoder of a pre�x code operates as follows: Given an encoded

sequence Z, it begins by looking for the �rst codeword to appear in Z. That

is, it looks to see if Z1 is a codeword, and if not it looks to see if Z1; Z2 is a

codeword, and if not it looks to see if Z1; Z2; Z3 is a codeword, and so forth.

Eventually, it �nds an integer J1 such that Z1; : : : ; ZJ1 is a codeword in C. It

then applies the decoding rule fd; produces the reproduction (bU1; : : : ; bUK) =
fd(Z1; : : : ; ZJ1) and presents it to the user. Next the decoder examines the

remainder of Z; namely ZJ1+1; ZJ1+2; : : : ; until it �nds a codeword, say

(ZJ1+1; ZJ1+2; : : : ; ZJ2). It then applies fd and presents (bUK+1; : : : ; bU2K) =
fd(ZJ1+1; : : : ; ZJ2) to the user. Subsequent blocks of

bU are produced in the

same fashion. The purpose of the pre�x property is to insure that when the

decoder discovers a codeword in Z it may immediately decode these bits,

for it knows that they could not be the beginning of some longer codeword.

It is helpful to visualize the decoding with the aid of a binary tree.

For example, see Figure 2.7.1. Upward branches of the tree are identi�ed

with 0's and downward branches with 1's. Each codeword, v = (v1; : : : ; vL);

indicates a path through the tree from left to right, with the ith component vi
indicating whether the ith branch of the path is up or down. As a result, each

codeword is associated with the node reached at the end of its path. Once

this tree is speci�ed, one may envision the decoding process as using the

bits Z1; Z2; : : : to generate a path through the tree. When a node associated

with some codeword is reached, one has found Z1; : : : ; ZJ1 and applies the

decoding rule fd. One then returns to the root node of the tree and uses the

remaining bits ZJ1+1; ZJ1+2; ZJ1+3; : : : to generate a path through the tree

to the next codeword, and so on.

Section 2.7 2-27

00

01

10

110

111

0

1

Figure 2.7.1: Tree diagram of the pre�x code C = f00; 01; 10; 110; 111g.

A pre�x code is perfectly lossless if and only if the encoding rule fe is

a one-to-one function, i.e. it assigns distinct codewords to distinct source

sequences, and the decoding rule fd is the inverse of fe. The rate of such a

code is the average codeword length divided by K; that is,

R =
L

K
=

1

K

X
uK

p(uK)L(uK) ; (2.7.1)

where L(uK) denotes the length of the codeword fe(u
K) assigned to uK ;

and p(uK); as usual, denotes the probability of the source sequence uK .

The principal goal of this section is to �nd

r�V L;K
�
= min

8>>><>>>:r :
there is a perfectly lossless FVB pre-

�x code with source length K and

rate r

9>>>=>>>; ; (2.7.2)

which is the least rate of any FVB pre�x code with source length K, and

r�V L
�
= inf

8>>><>>>:r :
there is a perfectly lossless FVB pre-

�x code (with any source length) and

rate r

9>>>=>>>; (2.7.3)

= inf
n
r�V L;K : K = 1; 2; : : :

o
; (2.7.4)

which is the least rate of any perfectly lossless FVB code of any blocklength.

We will also answer the following:

Question 2.7.1 How does one design an FVB pre�x code?

The idea, of course, is to assign shorter codewords to source sequences

with higher probability even if it means assigning longer codewords to source

sequences with smaller probability. But how short and low long?

Section 2.7 2-28

We �rst consider the simplest case wherein the source length K is 1 and,

consequently, the code rate is the average length. It turns out that the key

strategy for designing low rate pre�x codes with source length 1 is to choose

the code so that

Lq �= � log2 pq; (2.7.5)

where pq and Lq are shorthand for p(aq) and L(aq); respectively. To see the

bene�t of such a choice let us compute the average length:

L =
QX
q=1

pqLq �= �
QX
q=1

pq log2 pq = H: (2.7.6)

Thus, the average length, and consequently the rate, is approximately equal

to the entropy of the source. The result of the previous section suggests that

this is very good and maybe even optimal performance. But two questions

remain:

Question 2.7.2 Does there actually exist a pre�x code with lengths Lq �=

� log2 pq?

Question 2.7.3 Could there be pre�x codes with even smaller rates?

Both of these questions may be answered using the following.

Theorem 2.7.1 (The Kraft inequality theorem) There exists a binary

pre�x code with lengths fL1; L2; : : : ; LQg if and only if

QX
q=1

2�Lq � 1: (2.7.7)

That is, if the \Kraft inequality" holds for fL1; : : : ; LQg; then there exists a

pre�x code having these lengths. Conversely, the lengths of any pre�x code

satisfy the Kraft inequality.

Proof

Let us �rst show that if fv1; : : : ; vQg is a pre�x code with lengths

fL1; : : : ; LQg; then
PQ

q=1 2
�Lq � 1. Let Lmax denote the length of the

longest codeword. We proceed by counting the number of binary sequences

of length Lmax that are pre�xed by one codeword or another, and by com-

paring this number to 2Lmax , the total number of binary sequences of length

Lmax. Speci�cally, the q-th codeword vq is a pre�x of 2Lmax�Lq binary se-

quences of length Lmax. Since the code has the pre�x-free property, no

Section 2.7 2-29

sequence of length Lmax is pre�xed by more than one codeword. Hence,

the total number of sequences pre�xed by some codeword is
PQ

q=1 2
Lmax�Lq

and since this can be no larger than 2Lmax , we have (after multiplying by

2�Lmax)
QX
q=1

2�Lq � 1 ; (2.7.8)

which is the Kraft inequality.

Now suppose that fL1; : : : ; LQg are a set of lengths satisfying the Kraft

inequality. We will show there is a pre�x code fv1; : : : ; vQg with these

lengths. Let us assume for convenience that the lengths are arranged in

increasing order, and let us begin by choosing v1 to be any binary sequence

of length L1. Next choose v2 to be any binary sequence of length L2 that is

not pre�xed by v1; choose v3 to be any binary sequence of length L3 that is

not pre�xed by v1 or v2; and so on. To demonstrate that this procedure will

always work, we will show, using the Kraft inequality, that if after the nth

stage (n < Q) we have been able to choose codewords fv1; : : : ; vng so as to

have lengths fL1; : : : ; Lng and so that no codeword is the pre�x of another,

then there is at least one binary sequence of length Ln+1 that is not pre�xed

by any of the codewords chosen so far, and this sequence can be chosen as

vn+1.

For any q; 1 � q � n; there are 2Ln+1�Lq binary sequences of length Ln+1
that are pre�xed by vq. Hence, the number of binary sequences of length

Ln+1 that cannot be selected as vn+1 is
Pn

q=1 2
Ln+1�Lq . Is there one left

that can be selected? The Kraft inequality shows

nX
q=1

2Ln+1�Lq = 2Ln+1
nX

q=1

2�Lq < 2Ln+1
QX
q=1

2�Lq � 2Ln+1 ; (2.7.9)

i.e., the number of binary sequences of length Ln+1 pre�xed by codewords is

strictly less than the total number of sequences of length Ln+1. Therefore,

at least one such sequence remains that can be selected as vn+1. 2

Let us now use the Kraft Inequality Theorem to answer Question 2.7.2 by

showing there are pre�x codes with lengths Lq �= � log2 pq. Since � log2 pq
need not be an integer, let us choose

Lq = d� log2 pqe ; q = 1; : : : ; Q : (2.7.10)

To see that there is indeed a pre�x code with these lengths, we need only

check that they satisfy the Kraft inequality (2.7.7). Using the fact that

d� log2 pqe � � log2 pq; (2.7.11)

Section 2.7 2-30

we �nd

QX
q=1

2�Lq =
QX
q=1

2�d� log2 pqe �
QX
q=1

2log2 pq =
QX
q=1

pq = 1 ; (2.7.12)

which demonstrates that the Kraft inequality holds. Therefore, there does

indeed exist a pre�x code with lengths Lq = d� log2 pqe; and this answers

Question 2.7.2. One may �nd such a code simply by following the brute force

procedure described in the second half of the proof of the Kraft inequality

theorem. That is, choose v1 to be any binary sequence of length L1, choose

v2 be any binary sequence of length L2 not pre�xed by v, and so on. The

resulting codes are called Shannon-Fano codes.

We can now carefully bound the average length of the resulting code.

Using the inequality,

d� log2 pqe < � log2 pq + 1; (2.7.13)

we �nd

L =
QX
q=1

pqLq =
QX
q=1

pqd� log2 pqe < �
QX
q=1

pq log2 pq +
QX
q=1

pq

= H + 1 : (2.7.14)

Similarly, using the inequality

d� log2 pqe � � log2 pq ; (2.7.15)

we �nd

L =
QX
q=1

pqLq =
QX
q=1

pqd� log2 pqe �
QX
q=1

�pq log2 pq

= H : (2.7.16)

Thus the average length L of a pre�x code with lengths Lq = d� log2 pqe

satis�es

H � L < H + 1 : (2.7.17)

We now answer Question 2.7.3 by showing that no pre�x code with source

length 1 can have average length smaller than H . To do this we make use

of the elementary inequality

ln x � x� 1 ; (2.7.18)

(ln x denotes the natural logarithm of x), which is illustrated in Figure 2.7.2

and which is the basis of many important inequalities in information theory.

Section 2.7 2-31

Let fL1; : : : ; LQg be the lengths of any pre�x code whatsoever. To show

that L must be larger than H; consider their di�erence. We �nd

L�H =
QX
q=1

pqLq +
QX
q=1

pq log2 pq

= �
QX
q=1

pq log2

2�Lq

pq

!
= �

QX
q=1

pq ln

2�Lq

pq

!
1

ln 2

� �
QX
q=1

pq

2�Lq

pq
� 1

!
1

ln 2
= �

0@ QX
q=1

2�Lq � 1

1A 1

ln 2

� 0 ; (2.7.19)

where the last inequality employed the Kraft inequality. This shows that

L � H for any pre�x code with source length 1.

-3

-2

-1

0

1

2

0 1 2 3
x

ln(x)

x-1

Figure 2.7.2: ln(x) and x� 1.

The following summarizes what we have learned so far about pre�x codes

with source length 1.

Lemma 2.7.2 Given a set of probabilities fp1; p2; : : : ; pQg:

(a) There exists a pre�x code with lengths fL1; L2; : : : ; LQg such that

L < H + 1 ; (2.7.20)

(b) For any pre�x code whatsoever

L � H : (2.7.21)

Section 2.7 2-32

Equivalently, letting L
�
denote the least average length of any pre�x

code, then

H � L
�
< H + 1 : (2.7.22)

Exercise 2.7.1 Find an example of a source for which the Shannon-Fano

code does not have the smallest possible average length; i.e. its average length

is greater than L
�
. Hint: one need only consider a binary source. 2

Let us now turn our attention to pre�x codes with source lengths K

greater than 1. Since the rate of such a code is proportional to its average

length, it has minimal rate if and only if it has minimal average length. So

we need only apply what we have just learned, except that here we need a

codeword for each source sequence of length K (i.e., QK codewords, one for

each uK 2 AK
U); and the relevant set of probabilities is

n
p(uK) : uK 2 AK

U

o
.

We conclude that the codeword for uK should have length approximately

equal to � log2 p(u
K). Speci�cally, there exists a pre�x code with lengths

L(uK) = d� log2 p(u
K)e; this code has

HK � L < HK + 1 ; (2.7.23)

and every pre�x code with source length K has

L � HK ; (2.7.24)

where HK denotes the entropy of the random vector UK = (U1; : : : ; UK),

HK �
= �

X
uK2AK

U

p(uK) log2 p(u
K) : (2.7.25)

Using the IID nature of the source, we �nd that HK simpli�es:

HK = �
X

uK2AK
U

p(uK) log2

KY
k=1

p(uk) = �
X

uK2AK
U

p(uK)
KX
k=1

log2 p(uk)

= �
KX
k=1

X
uK2AK

U

p(uK) log2 p(uk) = �
KX
k=1

X
uk2AU

p(uk) log2 p(uk)

= KH : (2.7.26)

Thus the least average length of pre�x codes with source length K, hence-

forth denoted L�
K , satis�es

KH � L�
K < KH + 1 : (2.7.27)

As a consequence, the least rate, R�
V L;K = L�

K=K, is between H and H +

1=K. In e�ect, larger source lengths enable us to reduce the 1 in equation

Section 2.7 2-33

(2.7.20) to 1=K; which is especially important when H is small. In addition,

we easily see that R�
VL

�
= inf

n
R�
V L;K : K = 1; 2; : : :

o
= H . We summarize

in the following.

Theorem 2.7.3 (Coding Theorem for FVB Pre�x Codes) Let U be

an IID source with �nite alphabet and entropy H.

(a) Positive statements:

R�
V L;K < H +

1

K
; for every positive integer K ; (2.7.28)

i.e. for every K there is an FVB pre�x code with source length K and

rate R < H + 1
K
; and

R�
V L � H ; (2.7.29)

i.e. for every � > 0 there is an FVB pre�x code with rate R � H + �.

(b) Converse Statement:

R�
V L;K � R�

V L � H ; for every positive integer K ; (2.7.30)

i.e. every pre�x code (with any source length whatsoever) has rate

R � H.

(c) Combined Statements: For any positive integer K,

H � R�
V L;K < H +

1

K
; (2.7.31)

and

R�
V L = H : (2.7.32)

Exercise 2.7.2 (a) Show that R�
V L;K � R�

V L;MK for any positive integers

M and K. (Hint: Consider a code with source length MK whose codebook

consists of all possible concatenations of M codewords from the codebook of

an optimal code with source length K.) (b) Find an example of a source for

which R�
V L;K+1 < R�

V L;K for some K. (c) (Di�cult) Find another example

for which R�
VL;K+1 > R�

V L;K. 2

Hu�man's code design algorithm

Our �nal task is to answer Question 2.7.1, namely: How does one design

pre�x codes with the least possible average length and rate? The point of

Exercise 2.7.1 was to show that the Shannon-Fano code does not always give

the least average length. Optimal codes, i.e those with smallest rate, are

Section 2.7 2-34

found by Hu�man's algorithm, which we will now describe. The resulting

codes are often called Hu�man codes.

Given a set of probabilities PQ = fp1; : : : ; pQg; we must �nd an optimum

codebook CQ = fv1; : : : ; vQg; i.e., one with LQ =
PQ

q=1 pqLq as small as

possible. (Here, it helps to subscript C and L with the number of source

symbols Q). The basic idea of Hu�man's algorithm is that an optimum

codebook can be formed by a simple \extension" of an optimum codebook

CQ�1 for the \reduced" set of probabilities PQ�1 = fp01; : : : ; p
0
Q�1g; where

the p0q's are the same as the pq's except that the two smallest pq's in PQ
have been added to form one of the p0q's. It simpli�es notation to assume

p1 � p2 � : : : � pQ. Then p01 = p1, p
0
2 = p2, : : :, p

0
Q�2 = pQ�2, p

0
Q�1 =

pQ�1 + pQ. The key observation, to be proved later, is:

If CQ�1 = fv01; : : : ; v
0
Q�1g is an optimum codebook for PQ�1; then

CQ = fv01; : : : ; v
0
Q�2; v

0
Q�10; v

0
Q�11g is an optimum codebook for PQ.

That is, an optimum code for PQ is obtained by taking an optimum code

CQ�1 for PQ�1; using the �rst Q�2 codewords as they are, and \extending"

the (Q � 1)th codeword by adding \0" to obtain the codeword vQ�1 =

(v0Q�10) and then adding a \1" to obtain the codeword vQ = (v0Q�11).

Next, an optimum codebook for PQ�1 can be constructed by extending

an optimum codebook CQ�2 for the reduced set PQ�2; formed by adding

the two smallest probabilities in PQ�1. We continue to reduce the set of

probabilities in this way, until we need only �nd an optimum codebook for

a set P2 containing just two probabilities.

We now work our way backwards. An optimum codebook for the set

P2 is, obviously, C2 = f0; 1g. An optimum codebook C3 for P3 (with three

probabilities) is obtained by appending both 0 and 1 to the codeword in C2

associated with the probability in P2 that is the sum of the two smallest

probabilities in P3. An optimum codebook C4 for P4 is obtained by append-

ing both 0 and 1 to the codeword in C3 associated with the element of P3
that is the sum of the two smallest elements of P4; and so on until we �nd

an optimum codebook CQ for the original set of probabilities PQ.

The process of reducing a set of probabilities and then expanding the

codebooks is illustrated in Figure 2.7.3. Notice that at various stages there

are three or more smallest probabilities, from which we arbitrarily choose

to combine two. Consequently, the Hu�man algorithm may be used to

generate a number of optimum codebooks, even having di�erent sets of

lengths (see Exercise 2.7.6). Of course they all have the same average length,

for otherwise they would not all be optimum.

Section 2.7 2-35

P6

00

1

01

0

1

00

10

11

010

0110

0111

P PP P P5 4 3 2

.3

.2

.2

.1

.1

.1

.3

.2

.2

.1

.2

.3

.2

.2

.3

.4

.3

.6

.4

.3

(a) Reducing the sets of probabilities.

C C CCC6 5 4 3 2

00

10

11

010

011

00

10

11

01

(b) Expanding the set of codewords.

Figure 2.7.3: Hu�man design procedure.

It remains only to prove the key observation. Accordingly, let CQ�1 =

fv01; : : : ; v
0
Q�1g be an optimum codebook for PQ�1; and let CQ =

fv01; : : : ; v
0
Q�2, v

0
Q�10, v

0
Q�11g be a codebook for PQ. The average length

of CQ is related to that of CQ�1 via

LQ =
QX
q=1

pqLq =
Q�2X
q=1

pqL
0
q + pQ�1(L

0
Q�1 + 1) + pQ(L

0
Q�1 + 1)

=
Q�1X
q=1

p0qL
0
q + (pQ�1 + pQ)

= LQ�1 + (pQ�1 + pQ) : (2.7.33)

We will now use proof by contradiction. Suppose CQ were not optimum

for PQ. Then an optimum code C�
Q = fv�1; : : : ; v

�
Qg for PQ will have average

Section 2.7 2-36

length L
�
Q < LQ. Moreover, Exercise 2.7.7, below, shows that C�

Q can be

chosen so that the codewords associated with pQ and pQ�1 are siblings in the

sense of having the same length and di�ering only in the last bit. From C�
Q

we may in turn create a code C�
Q�1 = fv�1; : : : ; v

�
Q�2; v

0
Q�1g for PQ�1; where

v0Q�1 is obtained by stripping the last bit from v�Q�1 (or for that matter,

from its sibling v�Q). Notice that C
�
Q is, in fact, the direct extension of C�

Q�1.

Therefore using (2.7.33), the average length of C�
Q�1 is

L
�
Q�1 = L

�
Q � pQ�1 � pQ < LQ � pQ�1 � pQ

= LQ�1 ; (2.7.34)

which contradicts the fact that CQ�1 is optimum for PQ�1. Hence, our as-

sumption that CQ is not optimum must be false; i.e., CQ is indeed optimum.

letter prob. codewd. len.

Space .1859 1000 3

E .1031 100 3

T .0796 0010 4

A .0642 0100 4

O .0632 0110 4

I .0575 1010 4

N .0574 1011 4

S .0514 1100 4

R .0484 1101 4

H .0467 1110 4

L .0321 01010 5

D .0317 01011 5

U .0228 11110 5

C .0218 11111 5

letter prob. codewd. len.

F .0208 001100 6

M .0198 001101 6

W .0175 001110 6

Y .0164 011100 6

G .0152 011101 6

P .0152 011110 6

B .0127 011111 6

V .0083 0011110 7

K .0049 00111110 8

X .0013 001111110 9

J .0008 0011111110 10

Q .0008 00111111110 11

Z .0005 00111111111 11

Figure 2.7.4: Hu�man code for English

Example 2.7.2 An optimal code (source length K = 1) for the probabilities

of English letters given in Figure 2.5.4 is shown in Figure 2.7.4. Its rate is

4.12 bits per symbol which compares to the entropy of 4.08. 2

Exercise 2.7.3 Find a set of probabilities fp1; : : : ; pQg for which there does

not exist a pre�x code with lengths Lq = b� log2 pqc, q = 1; : : : ; Q. This

explains why we conservatively rounded up rather than down. 2

Exercise 2.7.4 Show that the minimum average length among pre�x codes

equals H, exactly, when and only when all pq's are powers of 2. 2

Section 2.7 2-37

Exercise 2.7.5 Find an integer Q and a set of probabilities fp1; : : : ; pQg for

which the minimum average length of pre�x codes is at least .9 bits larger

than H. 2

Exercise 2.7.6 An IID source U has alphabet AU = fa; b; c; d; eg and prob-

abilities f:4; :2; :2; :1; :1g. (a) Find two pre�x codes with source length 1

whose average lengths are minimum and whose sets of lengths are di�erent.

(b) For each code compute the average and variance of its lengths. (c) Can

you think of a reason why a code with smaller variance would be useful?

(Hint: See the discussion below on bu�ering.) (d) Find the smallest source

length K for which there exists a pre�x code with rate R � H + :1 . 2

Exercise 2.7.7 Show there exists an optimum codebook CQ for the set of

probabilities PQ = fp1; : : : ; pQg such that the codewords associated with the

two smallest probabilities are siblings in the sense of having the same length

and di�ering only in the last bit. Hint: First show that the longest codeword

in any optimum codebook has another codeword as a sibling. 2

Exercise 2.7.8 (FromMcEliece, Problem 10.22) Consider the game of \twenty

questions" in which you are required to determine the outcome of one roll

of a pair of dice by asking questions that can be answered \yes" or \no".

The outcome to be guessed is one of the integers 2; 3; 4; : : : ; 12. A question

takes the form \Is D 2 S?" where D is the outcome of the dice and S

is a subset of the integers f2; 3; : : : ; 12g. The choice of a question, i.e the

choice of S, may depend on the answers to the previous questions, and the

number of questions until the outcome is determined need not be the same

for all outcomes. Find a questioning strategy that, on the average, requires

the fewest number of questions.

Hints: (1) If you asked \Is it 2?" , \Is it 3?" etc., you would average

a little under six questions. It is possible to do better, however. (2) Given

an algorithm for questioning, the sequence of yes/no answers you get for a

given value D might be considered a binary codeword for D. (3) What is the

probability of a given value of D? 2

Exercise 2.7.9 A binary IID source U with alphabet AU = f0; 1g and p0 =

:9.

(a) Find the smallest possible rate of any FVB lossless source code?

(b) Find a �xed-to-variable length block pre�x code with rate .55 or less.

Make it as simple and good as possible. And compute the rate of the code.

2

Section 2.7 2-38

Exercise 2.7.10 An IID source U has L�
2 = 4 and L�

3 = 4:8. What can be

said about its entropy H? In other words, �nd upper lower bounds to H. 2

Remarks

Bene�ts of larger source lengths

For IID sources, we have seen that the bene�t of making the source length

K larger than 1 is to reduce the rate to no more than (HK+1)=K = H+1=K;

which is especially important when H is small. On the other hand, for

sources with dependent random variables, we will show in a later chapter

that HK=K decreases with K; so that signi�cantly larger reductions in rate

will be possible. On the other hand, one should remember that the number

of codewords and the corresponding complexity of implementation of the

code increase exponentially with K.

Notice that although Theorem 2.7.3 �nds R�
V L exactly, it gives only

bounds to R�
V L;K . To �nd the latter exactly, one must apply the Hu�man

algorithm to �nd an optimum code with source length K for the probability

distribution pUK(u
k). By de�nition, the rate of this code is R�

V L;K .

Complements

Synchronization and transmission errors

Although we have presumed that the decoder is always given the binary

representation exactly as produced by the encoder, in practice, there may

occasionally be mistakes. That is, bits may be deleted, inserted or changed,

and if precautions are not taken, such perturbations may have large e�ects.

Let us �rst consider the situation in which a pre�x code is used to en-

code an in�nite sequence of source symbols, but for some reason, the �rst

few bits of the binary representation become lost. Clearly, the decoder is

not likely to be able to determine any of the source symbols whose code-

words have missing bits. But it may also happen that subsequent source

symbols are incorrectly decoded; that is, the errors caused by this loss may

propagate. For example, suppose the codebook f01; 001; 101; 110g is used

for the alphabet fa; b; c; dg; suppose the codeword 110 for d is transmit-

ted repeatedly; and suppose the �rst bit is lost, so the decoder is given

only 10110110110110110 : : :. Instead of �nding the codeword 110 repeated

in�nitely many times and decoding into ddd : : :; the decoder �nds 101 re-

peated in�nitely and decodes into ccc : : : Basically, the loss of the initial

bit caused the encoder to lose track of where the codewords began. We

call this a loss of synchronization. Its e�ect on this code is disastrous. In

Section 2.7 2-39

contrast, a loss of synchronization has very little e�ect on the codebook

f1; 01; 001; 0001g because the end of each codeword is so easily recognized.

A similar situation arises when bits are inserted, deleted or changed in

the middle of the binary representation. The immediate e�ect is to incor-

rectly decode the a�ected codewords, but the more serious e�ect may be

a loss of synchronization for decoding subsequent source symbol. Thus, in

practice, if there is a realistic chance of the encoded bits being perturbed,

it is advisable to use codes that permit rapid resynchronization. Usually,

this entails making the codewords a little longer than would otherwise be

necessary, so there is a price to pay for this kind of protection. The reader

is referred to the book by Sti�er for a discussion of synchonizable codes.

Bu�ering

Suppose an FVB code is used in the situation where the source produces

symbols at regular time intervals (say, one every Ts seconds) and a channel

transmits bits at regular intervals (say, one every Tc seconds). If the encoder

has rate R = Ts=Tc; then on the average the bit rate (in bits per second)

produced by the encoder equals that which the channel can transmit, but

the variable length nature of the codebook means that the actual number

of bits produced in any given time interval may vary considerably from the

average. To handle this situation, bu�ering is essential.

A bu�er is a device capable of holding a large number of bits in their

original order. The encoder feeds new bits into the bu�er as it creates

them, and independently, the channel removes the oldest bits at the time it

transmits them. There are, however, two potential problems: over
ow and

under
ow. The former arises when over some period of time, the encoder

produces so many long codewords that the bu�er �lls to capacity, and new

bits are lost rather than entered into the bu�er. Generally, this is due to

the source producing an unusually long sequence of unlikely sumbols. In

e�ect, the rate produced by the encoder is much larger than the channel

rate. In this case some of the bits will be lost. Moreover, if the loss of

bits is not handled carefully, synchronization will be lost and the sort of

error propagation described above may occur. To reduce the likelihood of

over
ow, one should choose the bu�er to be large, but no matter how large

the bu�er, there is always some source sequence that will cause it to over
ow.

Under
ow is the reverse problem. Suppose over some period of time

the source produces a sequence of very likely symbols, so that the encoder

produces bits at a rate below that which the channel needs. At some point,

the channel will �nd the bu�er empty. Although there is nothing to transmit,

the channel will nevertheless produce a bit (probably at random) at its

Section 2.7 2-40

output, which the decoder will interpret as a real bit; i.e., it gets inserted

into Z. This will cause at least one source symbol error and possibly more,

if synchronization is lost. To prevent this sort of thing, whenever the bu�er

empties, one should immediately put in a specially designated codeword,

called a
ag, that indicates to the decoder that there was really nothing to

send. The code, augmented by the
ag, must be a pre�x code, and this

means that one or more of the codewords will be longer than they would

otherwise need to be. Thus the rate of the code will be slightly larger. The

ag will also add delay to the system, for once it is entered into the bu�er,

it must be transmitted in entirety, even if the encoder has already placed

something in the bu�er.

Separable codes

There are some perfectly lossless FVB codes that do not have the pre�x

property. For example, consider the codebook f1; 10; 100g. Since the code-

words are distinct and since each begins with a 1; there will be no problem

recognizing and decoding codewords in Z1; Z2; : : :. Unlike pre�x codes, how-

ever, the decoding will not be \instantaneous", in that when the codeword

10 is received by the decoder, it must wait for the next bit to determine

whether the encoder sent 10 or 100.

A necessary condition for an FVB codebook to be perfectly lossless

(presuming a one-to-one encoding rule and the corresponding inverse de-

coding rule) is that it be separable in the sense that the binary sequence

formed by concatenating any �nite number of codewords cannot also be

formed by concatenating some other �nite sequence of codewords. That is,

if Z1; Z2; : : : ; Zn and Z 0
1; Z

0
2; : : : ; Z

0
m are codewords, then (Z1Z2 : : :Zn) =

(Z0
1Z

0
2 : : :Z

0
m) if and only if n = m and Z i = Z 0

i; for i = 1; : : : ; n. For exam-

ple, the codebook f0; 01; 001g is not separable because the binary sequence

001 corresponds to the both the codeword 001 and also the concatenation

of codewords 0 and 01. There is a systematic method due to Sardinas and

Patterson for determining if a codebook is separable in a �nite number of

steps.

Exercise 2.7.11 Verify that pre�x codes are always separable. 2

Exercise 2.7.12 Show that any codebook with the su�x-free property that

no codeword is the su�x of another is separable. 2

A result known as McMillan's Theorem shows that, just as with pre�x

codes, the lengths of any separable code satisfy the Kraft inequality. Ac-

cordingly, there must also be a pre�x code with exactly the same lengths

Section 2.7 2-41

and rate. This is why one can restrict attention to pre�x codes with no loss

in potential performance.

Separable codes are also called uniquely decodable. However, Exercise

2.7.13, below, suggests this is not such a good name, for although it is always

possible to uniquely decode �nite sequences of codewords from a separable

code it is not always possible to uniquely decode in�nite sequences. All the

more reason to prefer pre�x codes.

Exercise 2.7.13 (a) Show that the codebook f00; 001; 1010; 0101g is sep-

arable. (Hint: see Exercise 2.7.12.) (b) Show that the binary sequence

001010101010101 : : : can be decoded in two very di�erent ways. 2

In�nite alphabet sources

It can be shown that Kraft inequality also holds for countably in�nite

sets of code lengths. Thus, although we restricted attention in this section

to �nite alphabet sources, in fact, the coding theorem for FVB pre�x codes

(Theorem 2.7.3) holds as stated for sources with countably in�nite alphabets.

Shannon-Fano coding works �ne, as well. On the other hand, Hu�man's code

design algorithm depended greatly on the �nite alphabet assumption and

cannot be applied when the alphabet is countably in�nite.

Section 2.7 2-42

