
Chapter 2

Lossless Source Coding

We begin this chapter by describing the general source coding scenario

in Section 2.1. Section 2.2 introduces the most rudimentary kind of source

codes, called �xed-length to �xed-length block. Section 2.3 introduces \loss-

less" source coding, which is the focus of this chapter. (\Lossy" source cod-

ing will be the focus of Chapters 11 and 12.) The subsequent sections of the

chapter investigate the limits to the performance of several di�erent kinds

of lossless source codes.

2.1 Introduction to Source Coding

Source coding is the process of representing data with binary symbols in

a compact and accurate way. The scenario, illustrated in Figure 2.1.1, is

the following. A source generates an in�nite sequence of symbols eU =

(U1; U2; : : :); this is the data we wish to represent. A source encoder produces

an in�nite binary representation eZ = (Z1; Z2; : : :) intended for transmission

or storage. A source decoder creates a reproduction
beU = (

beU1;
beU2; : : :) ofeU from eZ and presents it to the user. Together the encoder and decoder

constitute a source code.

The source symbols come from a set AU called the source alphabet, and

successive source outputs are modelled as random variables with this al-

phabet. In other words, the source is modelled as a random process, de-

noted fUkg or simply eU . Until otherwise stated, we will assume that eU is

stationary and memoryless; i.e., the Uk's are independent and identically
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Figure 2.1.1: The source coding scenario.

distributed (IID).

We will adopt the conventions of Appendix A for characterizing the prob-

ability distributions of random variables. Accordingly, let pU (u) character-

ize the probability distribution of the Uk 's. It is a probability mass function

(pmf), when the Uk's are discrete, and a probability density function (pdf),

when they are continuous.

The reproduction sequence
beU also consists of symbols from the source

alphabet. The kth reproduction symbol bUk is considered to be a reproduction
of the kth source symbol Uk .

There are two principal aspects to the performance of a source code:

compactness and accuracy, or �delity. On the one hand, a good source code

produces a compact binary representation, i.e. one with few bits, for such

a representation requires minimal resources for its transmission or storage.

On the other hand, for obvious reasons, a good source code produces a high

�delity reproduction, i.e. each decoder output bUk is similar to the source

symbol Uk for which it is a reproduction. Thus, when assessing source codes,

there are two measures of performance: rate, which measures compactness,

and distortion, which measures �delity | actually the lack of �delity. These

are more carefully de�ned below.

There are actually two measures of rate, both de�ned in terms of the

function Lk(U1; : : : ; Uk), which denotes the number of bits produced by the

encoder after it receives Uk and before it receives Uk+1 and which may

depend on the previously received symbols U1; : : : ; Uk�1. The empirical

average rate of the code when encoding source sequence eU is

hRi
�
= lim

N!1

1

N

NX
k=1

Lk(U1; : : : ; Uk): (2.1.1)

When, as is usual in this book, we have a random process model for the

source data, we can also compute the statistical average rate

R
�
= lim

N!1

1

N

NX
k=1

ELk(U1; : : : ; Uk); (2.1.2)
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where E denotes expected value.

There are also two measures of distortion | empirical and statistical.

Both are de�ned in terms of a user speci�ed distortion measure d, which is

a function such that d(u; bu) indicates the lack of �delity, i.e. distortion, inbu when used as a reproduction of the source symbol u. Speci�cally, d is a

non-negative, real-valued function that maps AU � AU into [0;1). Small

distortion indicates good �delity and large distortion indicates poor. The

empirical average distortion of the code when encoding source sequence eU
is

hDi
�
== lim

N!1

1

N

NX
k=1

d(Uk; bUk): (2.1.3)

And when we have a random process model for the source data, the statistical

average distortion is

D
�
= lim

N!1

1

N

NX
k=1

Ed(Uk; bUk): (2.1.4)

It is important to notice that the empirical average performances mea-

sures (rate and distortion) often depend on the source sequence being en-

coded, i.e. they can be di�erent for di�erent source sequences. Similarly, the

statistical average performance measures often depend on the random pro-

cess model for the source; i.e. they can be di�erent for di�erent models. In

this book we are concerned mostly with statistical average performance and

the terms average rate, average distortion, rate, and distortion will mean

statistical averages, unless otherwise stated. However, it is important to

understand that empirical average performance is what somone using the

source code would actually measure, whereas the statistical average perfor-

mance is what one usually computes when designing a source code. The

value in computing the latter, is that it is ordinarily a good predictor of

the former. In any case, a good code is one with small average rate and

distortion | empirical and/or statistical.

It should come as no surprise that there is a con
ict between compactness

and �delity. That is, it is hard to make one of them small without making the

other large. In other words, there is a tradeo� between rate and distortion.

Quantifying this tradeo� is one of the principal goals of our study of source

coding.

Remarks

(1) We choose to focus on binary representations, as opposed to ternary or

M -ary representations (for some integerM) because of their widespread
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appearance in transmission and storage systems. It would be equally

possible to work with M -ary representations, and it is easy to convert

what we learn about binary representations toM -ary representations.

The decision to label the two symbols \0" and \1" is entirely arbitrary,

and the only justi�cation we o�er is that it is the most widely adopted

convention.

(2) In any practical system, it is always possible that some of the repre-

sentation bits may be modi�ed by noise or other phenomena before

presentation to the decoder. Although this could have a signi�cant

a�ect on the �delity of the code, we have not included the possibility

of such \transmission errors" in our source coding scenario, because

we wish to focus on the fundamental limitations of the source coding

process in and of itself. However, there is one place later in this chap-

ter where we brie
y discuss the e�ects of errors on one type of source

code, and in Chapter 10 we will see that in situations where transmis-

sion errors are prevalent we may follow the source code with a channel

code that protects the binary representation from such transmission

errors.

(3) Another important measure of the goodness of a source code is its

complexity or its cost of implementation. While we shall not introduce

formal measures of such, we urge the reader to consider what might

be involved in implementing the various codes presented in this book.

For example, how many arithmetic operations are required per source

symbol for encoding and decoding? And how many symbols must be

saved in auxiliary storage? From time to time we shall comment on

such matters.

(4) Sometimes sources emit their symbols at regular intervals of time, for

example, SU symbols per second. While this is not always the case, it

can clarify the sequential nature of the source coding process to add

such an assumption to the source coding scenario. With this in mind

we note that when a source with symbol rate SU is encoded with a

code with rate R bits per symbol, the encoder produces SZ = SUR

bits per second, which we call the code symbol rate. Now we see that

the term \rate" could mean one of three things SZ , SU or R, so we

need to be sure to add the appropriate modi�er.

(5) There are situations where the reproduction alphabet is di�erent than

the source alphabet, for example, when color images are to be dis-

played on a monitor that displays only sixteen shades of gray. The

theory of source coding can be extended straightforwardly to this case.
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However, for simplicity we have assumed that the source and repro-

duction alphabets are the same.

(6) There are some situations where the limits included in the de�nitions

of rate and distortion (2.1.1)-(2.1.4)might not exist. In such cases, the

conservative thing is to replace the \limit" with a \lim sup". (See any

standard book on elementary analysis for a de�nition of a \lim sup".)

In this book, we shall restrict attention to codes, source sequences and

source models for which the limits exist. Thus we will not need to use

lim sup's.

(7) The distortions of codes de�ned in (2.1.3) and (2.1.4) are called per-

letter because they average a distortion de�ned individually for succes-

sive symbols. We point out here that some types of in�delity cannot

be adequately measured by a per-letter type distortion, no matter

how the distortion measure d is chosen. For example, a per-letter av-

erage distortion cannot measure the degree to which a reproduction

preserves the edges in an image or the short-term power spectra in

a speech recording. Although such in�delities may indeed be quite

important, information theory is primarily oriented towards per-letter

distortions.

2.2 Fixed-Length to Fixed-Length Block Source

Codes

Fixed-length to �xed-length block (FFB) codes are the most rudimentary

source codes. We will focus on them through Section 2.6, and again in

Chapters 11 and 12. An FFB code is characterized by a positive integer K

called the source length, another positive integer L called the code length, a

codebook C containing binary sequences of length L called codewords, a map-

ping fe called an encoding rule that assigns codewords to source sequences

of length K; and a mapping fd called a decoding rule, that assigns source

sequences of length K to codewords.

The code operates in the following \block fashion". See Figure 2.2.1.

The encoder waits until K symbols have arrived from the source, form-

ing a block U1 = (U1; : : : ; UK). It then applies the encoding rule and

produces the codeword fe(U1); which becomes the �rst L representation

bits, Z1 = (Z1; : : : ; ZL). These bits are transmitted or stored one by

one. The encoder then waits for the next block of source symbols, U2 =

(UK+1; : : : ; U2K), applies the encoding rule and produces the next L rep-

resentation bits Z2 = (ZL+1; : : : ; Z2L) = fe(U2), transmits them one by
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one, and so on. The meaning of \in block fashion" should now be evi-

dent. The decoder operates in a similar manner. It waits for the �rst L

representation bits Z1 applies the decoding rule fd; produces the �rst K

reproduction symbols Û1 = (U1; : : : ; UK) = fd(Z1) and presents them to

the user one by one. It then waits for the next L bits Z2 decodes them

producing Û2 = (ÛK+1; : : : ; Û2K) and so on.

U1 U2| {z }
?fez }| {

Z1 Z2 Z3| {z }
?fdz }| {cU1
cU2

U3 U4| {z }
?fez }| {

Z4 Z5 Z6| {z }
?fdz }| {cU3
cU4

U5 U6| {z }
?fez }| {

Z7 Z6 Z9| {z }
?fdz }| {cU5
cU6

U7 : : :| {z }
?fez }| {

Z10 : : :| {z }
?fdz }| {cU7 : : :

Figure 2.2.1: (a) The \block operation" of an FFB code with K = 2; L = 3

U1 U2| {z }
H
H
H
H

jz }| {
Z1 Z2 Z3| {z }

H
H
H
H

jz }| {cU1
cU2

U3 U4| {z }
H
H
H
H

jz }| {
Z4 Z5 Z6| {z }

H
H
H
H

jz }| {cU3
cU4

U5 U6| {z }
H
H
H
H

jz }| {
Z7 Z8 Z9| {z }

H
H
H
H

jz }| {cU5
cU6

U7 : : :| {z }
H
H
H
H

jz }| {
Z10 : : :| {z }

H
H
H
H

jz }| {cU7 : : :

Figure 2.2.1: (b) The same code with time delays shown.

We will frequently refer to the rules fe and fd as if they are the encoder

and decoder, respectively, instead of merely mappings that describe them.

When the source and reproduction alphabets are �nite one may use

tables to describe the encoding and decoding rules. For example, see Figures

2.2.2-2.2.4. One may visualize these rules with point diagrams such as that

in Figure 2.2.5 for the example of Figure 2.2.2.

We now discuss the performance of an FFB source code, i.e. the rate

and distortion. Recalling that the rate of a source code, de�ned by (2.1.2),

is the average number of representation bits per source symbol, it is easy to

see that the rate of an FFB code (statistical average) is

R =
L

K
; (2.2.1)
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Encoding Rule fe Decoding Rule fd

U1 U2 Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4
bU1

bU2

a a 0 0 0 0 0 0 0 0 a a

a b 0 0 0 1 0 0 0 1 a b

a c 0 0 1 0 0 0 1 0 a c

b a 0 0 1 1 0 0 1 1 b a

b b 0 1 0 0 0 1 0 0 b b

b c 0 1 0 1 0 1 0 1 b c

c a 0 1 1 0 0 1 1 0 c a

c b 0 1 1 1 0 1 1 1 c c

c c 1 0 0 0 1 0 0 0 c c

Figure 2.2.2: An FFB code with K = 2; L = 4.

Encoding Rule fe Decoding Rule fd

U1 Z1 Z1
bU1

a 0 0 a

b 0 1 c

c 1

d 1

Figure 2.2.3: An FFB code with K = 1; L = 1.

regardless of the source model. Because the rate never changes (indeed their

empirical average rate is L=K as well), FFB codes are sometimes called

�xed-rate codes.

Exercise 2.2.1 (a) Find an expression for the function Lk(u1; : : : ; uk). (b)

Prove (2.2.1). (c) Prove that emprical average rate hRi = L=K, as well, for

any source sequence. source. 2

For an FFB Code, the distortion (statistical average) de�ned by (2.1.4)

simpli�es to

D =
1

K

KX
k=1

E d(Uk; bUk) : (2.2.2)

Exercise 2.2.2 (a) Prove (2.2.2). You will need to make use of the IID

nature of the source. (b) Reprove (2.2.2) assuming only that the source is

stationary. 2

We conclude this section by commenting on the implementation and

complexity of FFB codes. One way to implement their encoding and de-

coding rules is simply to store and use encoding tables, such as those shown
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in Figures 2.2.2-2.2.4. The principal thing to notice is that the amount of

storge required for a table is proportional to the number of its rows, which

is QK for FFB encoding or decoding. This means that the storage required

for table look-up encoding and decoding increases exponentially with source

length K, and indicates that complexity should be viewed as growing ex-

ponentially with source length. Thus, FFB codes can be expensive to use,

unless K is kept small.

z7 0 0 0 0 1 1 1 1

z6 0 0 1 1 0 0 1 1

z5 0 1 0 1 0 1 0 1

z1 z2 z3 z4

0 0 0 0 NUL DLE SP 0 @ P ' p

0 0 0 1 BS CAN ( 8 H X h x

0 0 1 0 BOT DC4 $ 4 D T d t

0 0 1 1 FF FS , < L / l
R

0 1 0 0 STX DC2 " 2 B R b r

0 0 0 1 LF SUB * : J Z j z

0 1 1 0 ACK SYN & 6 F V f v

0 1 1 1 SO RS . > N ^ n ~

1 0 0 0 SOH DC1 ! 1 A Q a q

1 0 0 1 HT EM ) 9 I Y i y

1 0 1 0 ENQ NAK % 5 E U e u

1 0 1 1 CR GS - = M [ m g

1 1 0 0 EXT DC3 # 3 C S c s

1 1 0 1 VT ESC + ; K ] k f

1 1 1 0 BEL ETB ' 7 G W g w

1 1 1 1 SI US / ? O - o DEL

Figure 2.2.4: The decoding table of the ASCII Code, which is an FFB code

with K = 1; L = 7 for an alphabet with 128 symbols.

2.3 Introduction to Lossless Source Coding

Lossless source coding (also called noiseless source coding) is the special case

of source coding in which the user demands \essentially" no distortion and

asks for as small a rate as possible.

To quantify \essentially no distortion", it is customary to adopt the

Hamming distortion measure:

dH(u; û)
�
=

(
0; u = û

1; u 6= û
: (2.3.1)

In this case the average distortion between the kth source symbol Uk and its
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Figure 2.2.5: A point diagram for visualizing the encoding and decoding

rules of Figure 2.2.2

reproduction Ûk becomes the probability that they di�er; i.e.,

E dH(Uk; bUk) = Pr(Uk 6= bUk) ; (2.3.2)

and distortion of the code reduces to per-letter error probability

D = lim
N!1

1

N

NX
k=1

Pr(Uk 6= bUK) �
= PLE : (2.3.3)

For a block code with source length K, the result of Exercise 2.2.2 implies

that this further reduces to

D = PLE =
1

K

KX
k=1

Pr(Uk 6= bUk): (2.3.4)

Consequently, the demand for \essentially no distortion" translates to a

demand for PLE �= 0.

In this chapter, the main question we answer is:

Question 2.3.1 What is the smallest rate of codes with PL(E) �= 0?

As a start, in Section 2.4 we study FFB codes with PLE exactly zero;

these will be called perfectly lossless. Next in Sections 2.5 and 2.6, we will
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see that signi�cantly smaller rates are attainable with FFB codes if PLE is

permitted to be a little large than zero. Such codes will be called almost

lossless. Finally, in Section 2.7, we will investigate codes with variable-

length codewords that are perfectly lossless, yet have the smaller rates just

mentioned. In Chapters 11 and 12 we shall consider source coding at rates

below those attainable by lossless source coding. Such codes introduce non-

negligible amounts of distortion.

Remark

(1) Lossless coding with �nite rates is impossible unless the source is

discrete-valued. This is easy to establish for FFB codes (see the exer-

cise below) and holds equally well for all other kinds of codes, including

the variable-length codes considered later in this chapter. To simplify

discussion, unless otherwise stated, we will assume that the source has

a �nite alphabet. Occasionally, however, we shall indicate how the

results for �nite alphabets extend to countably in�nite alphabets.

Exercise 2.3.1 Show that PLE) = 1 for any FFB code with �nite rate

applied to any continous-valued source. Hint: Such codes can only have a

�nite number of codewords. 2

2.4 Perfectly Lossless FFB Source Codes

In this section we �nd the least rate of perfectly lossless �xed-length to �xed-

length block codes. This is the \obvious" case and treating it explicitly will

permit us to see clearly the gains of more serious source coding techniques

to be presented later. Speci�cally, we will �nd

R�PL(K)
�
= min

(
r :

there is a perfectly lossless FFB code

with source length K and rate r

)
;(2.4.1)

which is the least rate of any perfectly lossless FFB code with source length

K, and

R�PL
�
= inf

(
r :

there is a perfectly lossless FFB code

(with any source length) and rate r

)

= inf fR�PL(K) : K = 1; 2; : : :g ; (2.4.2)

which is the least rate of any perfectly lossless FFB code of any blocklength.2

2We write \inf" instead of \min" because there need not actually be a smallest rate

r at which there is a perfectly lossless FFB code. But there will always be a smallest

number r such that there exist perfectly lossless codes with rates arbitrarily close to r,

and this number is called the in�mum and denoted inf. For example, minfx 2 (0; 1]g does

not exist but inffx 2 (0; 1]g equals 0.
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As indicated in Remark (1) of the previous section, we will assume here

and throughout the rest of this chapter that the source alphabet AU is �nite,

speci�cally, having the Q symbols fa1; a2; : : : ; aQg.

In order for an FFB code with source length K to be perfectly lossless,

it must have

fd(fe(u
K)) = uK ; for all source sequences uK ; (2.4.3)

which happens if and only if the encoding rule fe is a one-to-one mapping

of source sequences to codewords and the decoding rule fd is its inverse.

Consequently, a distinct binary codeword of length L must be assigned to

each of the QK source sequences of length K. Since only 2L distinct binary

sequences are available to be used as codewords, L and K must be chosen

so that 2L � QK ; or equivalently, so that L � dK log2Qe; where dce denotes

the smallest integer no smaller than c. It follows that the rate of a perfectly

lossless FFB code can be no smaller than dK log2Qe=K.

Conversely, if K and L are any two integers such that 2L � QK , equiv-

alently L � dK log2Qe; then one may design a perfectly lossless code with

rate L=K � dK log2Qe=K | simply let the encoding rule be any one-to-one

mapping from source sequences of length K to binary sequences of length

L; and let the decoding rule be its inverse.

We conclude that the least rate of perfectly lossless FFB codes with

source length K is

R�PL(K) =
dK log2Qe

K
: (2.4.4)

Since K log2Q � dK log2Qe < K log2Q+ 1, we obtain the following upper

and lower bounds to R�PL(K)

log2Q � R�PL(K) � log2Q+
1

K
: (2.4.5)

And since R�PL, the least rate of perfectly lossless FFB codes with any source

length, is just the in�mum of R�PL(K) over all source lengths K, we see that

R�PL = log2Q. We summarize with the following theorem, which is the �rst

of many \coding theorems" to appear in this book.

Theorem 2.4.1 (Coding Theorem for Perfectly Lossless FFB Codes)

For any source with a Q symbol alphabet, the least rate of any perfectly loss-

less FFB code with source length K is

R�PL(K) =
dK log2Qe

K
; (2.4.6)

and the least rate of any perfectly lossless FFB code with any source length

is

R�PL = log2Q : (2.4.7)
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Each conclusion of this theorem may be decomposed into a positive and

a negative statement. The positive statement corresponding to (2.4.6) is

that there exists a perfectly lossless FFB code with source length K and

rate equal to log2Q; the negative statement is that no perfectly lossless

FFB code with source length K has rate less than log2Q. The positive

statement corresponding to (2.4.7) is that there exist perfectly lossless FFB

codes with rates arbitrarily close to log2Q. The negative statement is that

no perfectly lossless FFB codes have rate less than log2Q. We will see

in future sections and chapters that all coding theorems have positive and

negative statements | the positive specifying that a certain degree of good

performance is possible, the negative specifying that no better performance

is possible.

Notice that according to the upper bound to R�PL(K) in (2.4.5), as K

increases, R�PL(K) approaches log2Q at least as rapidly as 1=K. However,

as the following exercise shows, the approach is not always monotonic, and

the upper bound can be loose or tight.

Exercise 2.4.1 Assuming Q = 3, �nd R�PL and R�PL(K) for K = 1 to 6.

Does R�PL(K) decrease monotonically with K? How tight is the upper bound

provided by (2.4.5)? 2

Exercise 2.4.2 For what values of Q will there be perfectly lossless FFB

codes with rate exactly equal to log2Q? 2

Example 2.4.1 When English text is to be encoded, the alphabet AU cer-

tainly contains the 26 letters fa; b; : : : ; zg. But it must also contain the sym-

bol \space", as this too must be encoded. In this case, r�PL = log2 27 = 4:75

bits/character. If, in addition, we wish to distinguish capital and lower case

letters, then r�PL = log2 53 = 5:72. The ASCII code shown in Figure 2.2.4

uses 7 bits to represent 128 di�erent symbols, including the lower and upper

case letters, space, the ten numerals 0, 1, 2, . . . , 9, the standard punctuation

symbols, common symbols such as %, & and a variety of computer control

characters. 2

Exercise 2.4.3 Show that that if the source alphabet is in�nite, there can

be no perfectly lossless FFB codes. 2

2.5 Almost Lossless FFB Source Codes

We now consider the possibility of designing FFB codes with rate less than

log2Q. Because of Theorem 2.4.1, such codes cannot be perfectly lossless,
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but it turns out they have arbitrarily small error probability. In this section

we will sketch the principal ideas; careful statements and proofs will be left

to the next section and chapter. The main goal is to �nd

R�AL
�
= inf

8<:r :
for any � > 0, there is an FFB code with

PLE � � and rate R less than or equal

to r + �

9=; ; (2.5.1)

which is the precise way of de�ning the smallest rate at which arbitrarily

small error probability is achievable.

We begin by examining what contributes to error probability. Given an

FFB code with source length K; code length L; codebook C; encoding rule

fe and decoding rule fd; the per-letter error probability is (by the result of

Exercise 2.2.2)

PLE =
1

K

KX
k=1

Pr(Uk 6= bUk); (2.5.2)

where ( bU1; : : : ; bUK) = fd(fe(U1; : : : ; UK)). Unfortunately, it is usually rather

di�cult to compute PLE or to make theoretical developments in terms of it.

Instead, it is easier to work with the block error probability

PBE
�
= Pr(UK 6= bUK) = Pr(U1 6= bU1 or U2 6= bU2 or : : : or UK 6= bUK);

(2.5.3)

which is closely related to PLE via

1

K
PBE � PLE � PBE: (2.5.4)

Exercise 2.5.1 Prove the above inequalities. 2

The upper bound PLE � PBE is especially important. For if you design

a system to have small PBE, the user will be comfortable knowing that PLE ,

the real concern, is no larger. From now on we shall use PBE in all further

discussions of lossless block coding.

Given some FFB code, let G denote the set of correctly encoded source

sequences; i.e. the set of source sequences of length K that are encoded and

decoded without error. Formally,

G = fuK : fd
�
fe(u

K)
�
= uKg: (2.5.5)

See Figure 2.5.1. We will show that the performance of the code is expressly

related to properties of G. First, the error probability is related to the

probability of G via

PBE = Pr(UK 62 G) = 1� Pr(UK 2 G): (2.5.6)
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Second, the rate of the code is related to the size of G by the fact that there

must be a distinct codeword in the codebook for every correctly encoded

sequence in G (otherwise they would not be correctly encoded and decoded).

Since codewords are binary sequences of length L and since there are only

2L such binary sequences, it must be that

jGj � 2L (2.5.7)

or, equivalently, that L � log2 jGj; where jGj denotes the number of se-

quences in G. Consequently, the rate of the code is bounded by

R =
L

K
�

log2 jGj

K
: (2.5.8)

Thus we see that if one has a good code (low rate and PBE �= 0); then the

set G of correctly encoded sequences is a \small" set with probability close

to one.

U K Z L
U K^Lencoding decoding

G G

Z

Figure 2.5.1: The set G of correctly encoded sequences. Each square repre-

sents one sequence.

Conversely, if one can �nd a \small" set of source sequences eG with

probability close to one, then one can use it as the basis for designing a good

almost lossless FFB code (low rate and PBE �= 0); by choosing the encoder

and decoder so that eG becomes the correctly encoded set. Speci�cally,

make fe assign a distinct binary codeword of length L = dlog2 j
eGj e to every

sequence in eG; make fe assign an already chosen codeword to every source

sequence not in eG; and make fd map each codeword into the source sequence
from eG that generates it. Accordingly, one obtains a code with rate R =

dlog2 j
eGje=K and error probability PBE = 1� Pr( eG) �= 0.
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From the above discussion we conclude that the key question in almost

lossless FFB coding is:

Question 2.5.1 How small is the smallest set of source sequences of length

K with probability nearly one?

This question can be studied apart from source coding; it is just a matter

of how p(uK) distributes probability over source sequences of length K.

Does it spread probability fairly uniformly, or does it mostly concentrate

probability on a relatively small set, which could then be used as the basis

for an almost lossless FFB code? If it concentrates probability on a seteG whose size is signi�cantly smaller than QK (the total number of source

sequences of length K); then there is an almost lossless FFB code with rate

dlog2 j
eGje=K; which is less than log2Q; the least rate of perfectly lossless

FFB codes.

We will show that when K is large, Question 2.5.1 may be answered with

the law of large numbers, for example, the weak law of large numbers. A

brief discussion of this law is given in Section A.7.2 of Appendix A, and a

thorough discussion is given in Chapter 3. Here, we will merely state what

we need and sketch the idea for its use.

Recall that our source is an IID random process fUkg with �nite al-

phabet AU = fa1; : : : ; aQg and probability mass function p(u). Let pq be

a shorthand notation for p(aq). The weak law of large numbers (WLLN)

shows that when K is large, the fraction of times that a symbol aq occurs in

the K random variables U1; : : : ; UK is, with high probability, approximately

equal to pq, for every symbol aq in the alphabet. To make this concrete,

let nq(UK) denote the number of times that aq appears in UK . Then the

WLLN shows that for any positive number � (that we ordinarily choose to

be small)

Pr

 
nq(UK)

K
:
= pq � �; q = 1; : : : ; Q

!
�! 1 as K �! 1; (2.5.9)

where a
:
= b� � is shorthand for ja�bj � � or, equivalently, b� � � a � b+ �.

In other words, when K is large, it is very likely that each symbol in the

alphabet occurs in UK with a frequency close to its probability.

Like any event involving the random vector UK ; the event fnq(UK)=K
:
=

pq � �; for q = 1; : : : ; Qg can be expressed in the form fUK 2 Tg; where T

is some set of outcomes of UK . Speci�cally,

T
�
=

(
uK :

nq(u
K)

K
:
= pq � �; for q = 1; : : : ; Q

)
: (2.5.10)
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Since every sequence in T has the property that each symbol aq occurs with

a frequency close to its probability and since this constitutes \typical" be-

havior, we will from now on call such sequences typical. In this terminology,

the weak law of large numbers says that when K is large, the outcome of

the random vector UK will, with high probability, be typical; i.e., it will be

one of the typical sequences in T . Equivalently,

Pr(UK 2 T ) �= 1 : (2.5.11)

Bearing in mind that we wish to �nd the smallest set with large proba-

bility and that T is, at least, a set with large probability, let us count how

many sequences it contains. The feasibility of doing so derives from the

key fact that all sequences in T have approximately the same probability.

To demonstrate this fact, recall that the IID nature of the source implies

that the probability of any sequence is a product of the probabilities of its

components:

p(uK) = p(u1)p(u2) � � �p(uK) : (2.5.12)

Each term in this product is either p1 or p2 or : : : or pQ; speci�cally, p(ui) =

pq if ui = aq. Since nq(u
K) is the number of times aq appears in uK ; the

product may be rewritten in the form

p(uK) = p
n1(u

K)
1 p

n2(u
K)

2 � � �p
nQ(u

K)
Q : (2.5.13)

Now if uK is typical (i.e., a member of T ), then nq(u
K) �= Kpq (assuming �

is chosen small) and, consequently,

p(uK) �= pKp1
1 pKp2

2 : : :p
KpQ
2

�
= p�(K) ; (2.5.14)

which shows that each sequence in T has, approximately, the same proba-

bility.

Let us now return to the counting of T . Since each sequence in T has

probability approximately equal to p�(K), and since T has probability ap-

proximately equal to one, the number of sequences in T must be, approxi-

mately, 1=p�(K). Thus we have determined the size of T .

Having found its size, we now argue that T is, essentially, the smallest set

with probability close to one. This is because the approximately 1=p�(K)

(typical) sequences in T , each having probability approximately equal to

p�(K), account for essentially all of the probability in the distribution of

UK . It follows that the probability of any other set is, approximately, p�(K)

times the number of typical sequences that it contains. Consequently, the

Section 2.5 2-16



only way to form a set with probability close to one is to include essentially

all of the sequences of T (the set might also contain other sequences with

very small probability). We conclude that T , is essentially, as small as any

set with probability close to one.

It is now evident that p�(K) is a very important quantity. It will be

worthwhile to rewrite it as

p�(K)
�
= pKp1

1 pKp2
2 : : :p

KpQ
2

= 2Kp1 log2 p12Kp2 log2 p2 : : :2KpQ log
2
pQ

= 2
K
PQ

q=1
pq log2 pq

= 2�KH (2.5.15)

where

H
�
= �

QX
q=1

pq log2 pq : (2.5.16)

This shows that p�(K) decreases exponentially with block size K. The quan-

tity H , which is a simple function of the symbol probabilities, determines

the rate of the exponential decrease. Of equal importance is the fact that

in terms of H , the size of T is

jT j �= 2KH ; (2.5.17)

i.e. it increases exponentially with K, with rate determined by H .

We now have the complete answer to Question 2.5.1. When K is large,

the smallest set of length K source sequences with probability close to one

contains approximately 2KH sequences. Moreover, the probability distribu-

tion of UK assigns nearly equal probability to each sequence in this set. This

is often called the asymptotic equipartition property (AEP), because it says

that asymptotically for large K the probability distribution is, essentially,

equally divided among a certain set of sequences. The reader is cautioned

that so far we have given only a rough statement of this result and a sketch

of its derivation. Careful statements and proofs are the subject of Chapter 3,

where it is formally stated and proved in the Shannon-McMillan Theorem.

Returning to source coding, it follows from the AEP that H is the least

rate attainable with almost lossless FFB codes. (A code designed so that T

is the set of correctly encoded sequences has rate R = dlog2 jT je=K �= H .)

A careful statement and proof of this fact is given in the next section, where

it is called the Coding Theorem for Almost Lossless FFB codes. Among

other things it is shown there that our approximate method of counting is

adequate.
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Clearly, H is a quantity of fundamental importance. Shannon dubbed

it entropy because it has the same functional form as thermodynamical en-

tropy. Although it will be thoroughly explored in Chapter 4, we would be

remiss not to mention one of its principal properties here, namely,

0 � H � log2Q; (2.5.18)

with H = 0 if and only if pq = 1 for some q (i.e., if and only if there is no

uncertainty about the outcome of U) and with H = log2Q if and only if

pq = 1=Q for all outcomes (i.e., if and only if there is the maximum possible

uncertainty about which outcome will occur). This suggests that H can

be viewed as a measure of the amount of randomness or uncertainty in the

outcome of U . In any event, we see that when the outcomes of U are not

equiprobable, then H < log2Q; and consequently, almost lossless FFB codes

can outperform perfectly lossless FFB codes. As entropy places limits on

the rate of codes, we take its units to be those of rate, namely, bits per

source symbol.

Example 2.5.1 The entropy of a binary probability distribution fp; 1� pg,

as a function of p; is

H = �p log2 p� (1� p) log2(1� p) ; (2.5.19)

which is plotted in Figure 2.5.2. Notice that H is a convex \ function of p

(see Appendix A) that is symmetric about p = 1=2 and that increases steeply

as p departs from either 0 or 1; reaching a peak of 1 at p = 1=2. For instance,

if p = :1; then H = :47. This means that the least rate of almost lossless

FFB codes is .47 bits per symbol. In comparison the least rate of perfectly

lossless FFB codes is log2 2 = 1 bit per source symbol. 2

Although we know that almost lossless FFB codes can have rate as small as

H , we have had no indication of how large their source lengths K need to

be. To get a feeling for this, Figure 2.5.3 plots error probability vs. rate for

the best possible FFB codes with various source lengths, and for the binary

source of the previous example with p = :1 and H = :47. The �gure shows

that very large source lengths are needed in order that the rate be close to

entropy and the error probability be very small. For example, source length

200 is needed to obtain, approximately, error probability 10�5 and rate :7,

which is 50% larger than H = :47. In truth, this is somewhat disappointing,

because it indicates that very large (and consequently expensive) FFB codes

are needed to achieve the excellent performance predicted by this theory.

Fortunately, there is an alternate approach, to be discussed in Section 2.7,

that yields perfectly lossless codes at rates arbitrarily close to H with far

less complexity.
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Figure 2.5.2: (b) Entropy of a binary variable: H = �p log2 p � (1 �

p) log2(1� p)

Exercise 2.5.2 For positive integers K and n, 1 � n � K, let GK;n denote

the set of all binary sequences of length K with n or fewer ones. Find

expressions for the block error probability and rate of an FFB code having

GK;n as its set of correctly encoded sequences. These probablities and rate

are what are plotted in Figure 2.5.3. 2

Example 2.5.2 Estimates of the probabilities of the 26 letters and \space"

in the English alphabet are shown in Figure 2.5.4. The corresponding entropy

is 4.08 bits per source symbol. In comparison, it would take 5 bits per source

symbol to encode English text with a perfectly lossless FFB code. 2

Exercise 2.5.3 (a) Show that H � 0; and H = 0 if and only if pq = 1 for

some q. (b) Show that H � log2Q; and H = log2Q if and only if the aq's

are equiprobable. (Hint: Use the relation ln u � u � 1 with equality if and

only if u = 1 in the sum
PQ

q=1 pq log2
1=Q
pq

.) 2
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Figure 2.5.3: Block error probability vs. rate for the best FFB codes for

a binary IID source with Pr(1)=.1. From right to left, the plotted curves

correspond to source lengths K = 10; 50; 100; 200; 500; 1000. The dashed

line indicates the entropy, H = :47 bits/symbol.

Exercise 2.5.4 (From Gallager) An IID binary source has p0 = :995 and

p1 = :005. An almost lossless FFB code is to be designed with source length

K = 100 such that the set of correctly encoded sequences contains all se-

quences with 3 or fewer 1's. (a) Find the minimum possible rate of such

a code. (b) Find the block error probability PBE. (c) Use the Chebychev

inequality (A.5.11) to �nd an upper bound to PBE) and compare the result

to that of part (b). 2

2.6 The Coding Theorem for Almost Lossless FFB

Source Codes

In the previous section we learned from the asymptotic equipartition prop-

erty that for large K the smallest set of length K source sequences with

probability close to one contains approximately 2KH sequences, where H is

the entropy of the source. This fact was then used to argue that H is the

least rate of any FFB code with small error probability. This important

result about almost lossless coding is made precise in Theorem 2.6.1, whose

statement and proof are the topic of this section.
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Symbol Probability

A .0642

B .0127

C .0218

D .0317

E .1031

F .0208

G .0152

H .0467

I .0575

J .0008

K .0049

L .0321

M .0198

N .0574

Symbol Probability

O .0632

P .0152

Q .0008

R .0484

S .0514

T .0796

U .0228

V .0083

W .0175

X .0013

Y .0164

Z .0005

Space .1859

Figure 2.5.4: Frequencies of English letters: H = �
27X
j=1

pj log2 pj = 4:08

bits.

In order to state the theorem, let us de�ne P �BE(r;K) to be the smallest

block error probability of any FFB source code with source length K and

rate less than or equal to r. That is,

P �BE(r;K)
�
= inf

8>>><>>>:p :
there is an FFB code with source

length K, rate r or less, and block

error probability p

9>>>=>>>; : (2.6.1)

Theorem 2.6.1 (Coding Theorem for Almost Lossless FFB Source Codes)

Let eU be an IID source with entropy H.

(a) Positive statement: For any r > H,

P �BE(r;K)�! 0 as K �! 1 (2.6.2)

which implies

R�AL � H (2.6.3)

(b) Negative statement (converse): For any r < H

P �BE(r;K)�! 1 as K �! 1 (2.6.4)

The positive statement says there are almost lossless FFB codes with

rate as close as one could want to H . It does not, however, tell us whether
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there are almost lossless codes with even smaller rates. This is the role of

the negative statement (or converse), which says that codes with rate less

than H and large source length have large block error probability.

This theorem does not entirely answer the question of what is the least

rate of almost lossless block codes, i.e. it does not completely specify R�AL,

because the converse leaves open the possibility that for small source lengths,

there may be almost lossless codes with rate less than H . It also leaves open

the possibility that codes with rate less than H (with large or small source

lengths) might have small per-letter error probability. (Recall that the latter

can be less than block error probability.) A complete answer to the question

must be postponed to Chapter 5, where it is shown that all codes with

rate less than H (with large or small source length) have per-letter error

probability bounded from below by a monotonic function of rate that is

strictly greater than 0.

As previously indicated, the proof of this theorem makes use of the

asymptotic equipartition property, which was sketched in the previous sec-

tion and will be the principal topic of Chapter 3. For convenience, the

version we need (from Chapter 3) is carefully stated below.

Theorem 2.6.2 (The Shannon-McMillan Theorem) Let U be an IID

source with entropy H.

(a) Positive statement: For any � > 0 and positive integer K, there exists a

set TK
� containing source sequences of length K and 3

(i) Pr(UK 2 TK
� ) �! 1 as K �! 1; (2.6.5)

(ii) p(uK)
:
= 2�K(H��); for all uK 2 TK

� ; (2.6.6)

(iii) jTK
� j

:
= Pr

�
UK 2 TK

�

�
2K(H��) (2.6.7)

(b) Negative statement (converse): For any � > 0; there is a positively valued

function a�(K) that converges to zero as K �! 1 such that for any positive

integer K and any set S containing source sequences of length K,

jSj �
�
Pr(UK 2 S)� a�(K)

�
2K(H��): (2.6.8)

3The notation b
:
= f(a� �) means

min
������

f(a+ �) � b � max
������

f(a + �)
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Proof of Theorem 2.6.1

(a) Positive statement

Let us �x a number r > H . To show, as we must, that P �BE(r;K) �! 0 as

K �! 1, we will construct a sequence of FFB codes with increasing source

lengths such that the code with source length K has block error probability

PBE going to zero as K �! 1 and rate RK that is less than or equal to r

for all su�ciently large K. Since these codes have RK � r for all su�ciently

large K, it must be that P �BE(r;K) � PBE for all su�ciently large K. And

since PBE tends to zero as K �! 1, so must P �BE(r;K) tend to zero, which

will complete the proof.

To show the existence of a suitable sequence of FFB codes, let us apply

the Positive Statement of the Shannon-McMillan Theorem with � = (r �

H)=2. It shows that for every positive integer K there is a set TK
� of source

sequences of length K such that (2.6.5)-(2.6.7) hold.

As in the previous section, for any K let us design an FFB code with

source length K so that TK
� becomes the set of correctly encoded source

sequences. That is, we make the encoder fe assign a distinct binary codeword

of length L = dlog2 jT
K
� je to each sequence in T

K
� ; make fe assign an already

chosen codeword to each source sequence not in TK
� ; and make fd map each

codeword into the source sequence from TK
� that generates it. The encoding

rule is pictured in Figure 2.6.1. In this way, for all K we obtain a code with

block error probability

PBE = 1� Pr(UK 2 TK
� ) ; (2.6.9)

which goes to zero as K �! 1 by (2.6.5). The rate of this code is

RK =
L

K
=

dlog2 jT
K
� je

K

<
log2 jT j+ 1

K

�
K(H + �) + 1

K

= H + � +
1

K

� H + 2� for all su�ciently large K

= r ; (2.6.10)

where the second inequality used (2.6.7) and the fact that Pr(UK 2 TK
� ) � 1,

and where the last equality used the fact that � = (r � H)=2. This shows
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what we set out to prove and, therefore, completes the proof of the positive

statement.

The equivalent positive statement can be veri�ed as follows . . . (Not writ-

ten yet.)

U K Z L
U K^Lencoding decoding

T T

Z

Figure 2.6.1: A code with T as the set of correctly encoded sequences. Each

square represents one sequence.

(b) Negative statement

Let us �x a number r < H . To show, as we must, that P �BE(r;K) �! 1 as

K �! 1, we will �nd a lower bound to the block error probability of every

FFB code with source length K and rate r or less, which tends to one as

K �! 1.

Let us apply the Negative Statement of the Shannon-McMillan Theorem

with � = (H� r)=2. It shows there exists a positively valued function a�(K)

that converges to zero as K �! 1 such that for any positive integer K and

any set S containing source sequences of length K,

jSj �
�
Pr(UK 2 S)� a�(K)

�
2K(H��) : (2.6.11)

Equivalently,

Pr(UK 2 S) � jSj2�K(H��) + a�(K) (2.6.12)

Now consider an arbitrary FFB code with source length K, code length

L, rate R = L=K � r, codebook C, encoding rule fe and decoding rule fd.

Let G denote the correctly encoded set of source sequences; i.e., G = fuK :
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fd(fe(u
K)) = uKg. Then as argued in the previous section, the code's block

error probability is

PBE = 1� Pr(UK 2 G); (2.6.13)

and the number of sequences in G can be no larger than the number of

codewords, which in turn is no larger than 2L. Hence,

jGj � jCj � 2L = 2KR � 2Kr : (2.6.14)

Substituting G for S in (2.6.12) and using the above bound on jGj gives

Pr(UK 2 G) � 2Kr2K(H��) + a�(K)

= 2K(H�r��) + a�(K)

= 2K� + a�(K) ; (2.6.15)

where the last equality used � = (H � r)=2. Finally, using PBE = 1�Pr(G)

in the above yields

PBE � 1� 2� � a�(K) : (2.6.16)

Notice that the right hand side of the above converges to one as K goes to

1. Thus, as we set out to do, we have found a lower bound to the block

error probability of every FFB code with source length K and rate r or less,

which converges to one. This completes the proof of the negative statement

and the entire theorem. 2

Remarks

(1) Notice that the approximations for p(uK) and jTK
� j given in the Shannon-

McMillan theorem are really quite loose because 2K� grows to in�nity

as K increases. However, since the rate of the code based on TK
� is

the logarithm of jTK
� j divided by K; these loose bounds were su�cient

to prove the important result contained in the coding theorem.

(2) A simpler and in some respects stronger negative statement, called the

per-letter converse to the lossless source coding theorem, will be given

in Chapter 5.

(3) Although the results of this section show that almost lossless FFB

codes can reduce the rate to, approximately, H (which in some cases

is a big reduction), unfortunately the source lengths required to achieve

this reduction are not small. For example, they may be on the order

of 50 to 100. Since an FFB code needs to store the 2Kr correctly

encoded sequences, we see that this method is too complex for practical

implementation, when for example K = 50 and r = 1.
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