
DISTRIBUTED SIGNAL COMPRESSION AND AGGREGATION FOR SENSOR NETWORKS

An-swol Hu∗

Cornell University
School of Electrical and Computer Engineering

ach25@cornell.edu

Prasanta Bose

Lockheed Martin Space Systems Company
Advanced Technology Center

prasanta.bose@lmco.com

ABSTRACT

We present the Distributed Signal Compression and Aggregation
(DSCA) method to solve the signal exfiltration problem. The signal
exfiltration problem is the task of taking distributed observations of
a particular signal and exfiltrating that information to some base sta-
tion node that needs the signal information. We develop a model for
distributed signal sampling and develop a wavelet transform based
compression method to reduce the size of the data set that needs to
be communicated. A method for averaging together signal informa-
tion is devised to achieve signal aggregation. MATLAB and Ptolemy
II simulation results are presented to analyze the performance of the
DSCA method.

1. INTRODUCTION

In recent years, advancements in embedded technology have allowed
for the possibility of employing distributed sensor networks for a va-
riety of monitoring and surveillance tasks. Sensor networks have the
ability to give us unprecedented capabilities in the observation and
control of the physical world and these networks have applications
in everything from battlefield surveillance to habitat monitoring [7].

In applying large-scale sensor networks to such monitoring ap-
plications, we are inherently confronted with the challenge of ex-
tracting the sensed information from the distributed sensor nodes.
One particular problem that appears in many applications is the need
to extract a time-varying signal being produced by some target source.
The extracted signal may then be used, for example, in target clas-
sification. This problem is known as thesignal exfiltration prob-
lem illustrated in Fig. 1. For example, in [3] the authors consider
the problem of classifying birdcalls. They devise a preprocessing
method for a tiered sensor network to detect and classify birdcalls.
However, the desire to move the detected birdcall or extract an un-
classified birdcall is clearly the signal exfiltration problem. Another
significant application is found in the use of unattended ground sen-
sor systems (UGS) [6],[5] for target tracking and classification. In
these networks, ground sensors seek to classify or track targets based
on the seismic vibration patterns produced by different types of tar-
gets. In this case, the problem can be solved by moving the detected
waveforms to a more powerful sensor node for classification. This
idea can also be applied to the use of acoustic sensors [4] for target
classification.

The signal exfiltration problem presents us with two primary
challenges. First, nearly all sensor networks are severely power con-
strained and thus there is a need to conserve power. Since wireless
communication puts a significant demand on the power resources of
each node, we would like to compress the signal and reduce the com-
munication requirements. Second, since many nodes may observe
the same target signal, we would like to combine these distributed
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Fig. 1. The signal exfiltration problem. A target signal source is
detected by a network and the light gray nodes make observations of
the signal. The signal information is moved through the network to
a base station node.

observations to improve the final signal communicated to the ”base
station” node that wants to extract the signal. As a result, we can also
describe the signal exfiltration problem as a distributed compression
and aggregation problem. Another powerful way to consider the sig-
nal exfiltration problem is to view it as a distributed signal sampling
and aggregation problem. Many different nodes will sample the tar-
get signal and the goals is to combine all the samples in a distributed
manner so the base station node will have the best possible sample
set.

The remainder of the paper is organized as follows. In Section 2
we setup the problem and describe the sampling observations made
by each node. We describe our Distributed Signal Compression and
Aggregation (DSCA) method in Section 3 and present simulation
and analysis results in Section 4.

2. PROBLEM SETUP

2.1. System Overview

We considerN nodes densely deployed over a finite area along with
a stationary signal source emitting a bandlimited signal of unknown
bandwidth no greater thanB. The signal source either lies within
the area of the network or close enough to the network so thatNR

nodes, where0 < NR ≤ N , are within distanceR of the source
and can observe the transmitted signal. We callR the transmission
range of the signal source and we assume that all nodes within the
transmission range of the source will hear the same time-varying
signal while all nodes outside the transmission range will hear noth-
ing. These assumptions are made since we assume an RF signal
source which results in negligible phase shift and amplitude loss over
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a small transmission distanceR. For example, since wireless signals
suffer a time delay of approximately1 ns/foot [1], a low frequency
signal will have negligible phase shift over a distance of a few feet.

A base stationnode is placed in the sensor network. This base
station node wants to obtain a finely sampled version of the signal
transmitted by the signal source sampled atK Hz, whereK > 2B.
This node, however, may or may not be in the transmission range of
the signal source, so for generality we assume the base station node
can not directly sample the signal and must receive its information
from surrounding sensor nodes. Thus, the task of the senor network
has two primary parts. First, the nodes in the network that are within
the transmission range of the signal source must make samples of
the source signal. Second, the network must aggregate the signal
samples made my these nodes and move this information to the base
station node.

The operation of the network will therefore be divided into two
phases: asignal samplingphase and asignal processingphase. The
network will continually alternate between signal sampling and sig-
nal processing. During a signal sampling phase, each node in the
transmission range of the source signal will make noisy samples of
the transmitted signal and obtain a low quality reconstruction of the
source signal (the details of this phase will be described in Sec-
tion 2.2). In a signal processing phase each node will execute the
DSCA (DistributedSignal Compression andAggregation) method
and move the signal information obtained during the previous sam-
pling phase to the base station node. The method is described in
Section 3 and we assume existing data link and networking layers
that handle node to node communication to move information to the
base station node. We further assume the existence of a synchroniza-
tion protocol so all nodes in the network are closely synchronized.
That is, all nodes enter and leave a particular phase, either signal
sampling or signal processing, at the same time.

2.2. Signal Sampling

Even though we assume the nodes are synchronized, we do not as-
sume that the nodes take samples at the same time. As well, we make
the average sampling rate of each node much less than theK Hz de-
sired by the base station node. The reasoning for this is that during a
sampling phase it is desirable to allow nodes to sample whenever it
is convenient for it to sample and reduce the sampling requirements
for any one node. This will reduce computational complexity and
power requirements. To get the desiredK Hz sampling rate, we will
seek to combine the information from all nodes that make samples
and reconstruct the signal from the aggregated data.

To model this sampling behavior, for any given sampling phase
we first define apossible sampling pointas an instant in time that the
base station node would have liked to sample. Thus, a possible sam-
pling point occurs every1/K seconds. At each possible sampling
point, the node samples with probabilityp and does not sample with
probability1− p, independent of all other possible sample points or
other nodes. If a node samples at a particular possible sample point,
that sample point becomes anactual sample point. At each actual
sampling point, the source signal value is corrupted by independent
additive Gaussian noise with mean0 and varianceσ2. It is important
to note that the random sampling at each possible sampling point is
simply a model for generating the sample set. The manner in which
each node takes samples is unimportant as long as each node samples
on a subset of all possible sampling points.

After a node does this random sampling, we fill in the other pos-
sible sampling points at which the node did not sample by using
linear interpolation between any two actual sample points. The pos-
sible sample points before the first actual sample point and after the

last actual sample point are set to the value of the first actual sample
point and the last actual sample point, respectively. This gives the
node an approximate fine sampling of the noisy source signal.

We choose to use linear interpolation to construct the sampled
signal since it is the most straight forward method. This approach
does not give perfect reconstruction of the original signal but is con-
siderably less computationally intensive than methods for reconstruct-
ing signals from irregular samples [2].

The vector of sampled values and linearly interpolated values
is called thesamples vector. As well, during sampling the node will
create asamples number vectorthat is of the same length as the sam-
ples vector with each element corresponding to a possible sampling
point. The samples number vector will have a1 at each actual sam-
ple point and a0 at all other possible sampling points. Thus, the
samples number vector can keep track of which sample values were
actually sampled and which were linearly interpolated. We will thus
consider adata setto contain a samples vector and a samples number
vector.

3. THE DSCA METHOD

The DSCA method comprises of two main parts: signal compression
and signal aggregation. We describe each in detail before outlining
the entire method.

3.1. Signal Compression

The signal compression that is done in the DSCA method reduces
the number of samples needed to represent the samples vector. The
affects of quantization of the sample values are not considered in this
work. We focus on this lossy compression in an effort to not only
reduces the length of the samples vector but also to denoise the signal
as well. In actual system implementation, the bit representation of
the sample values is another parameter that can be adjusted to suit
the particular application. As well, the compression of the samples
number vector is not considered here since lossless compression is
desired for this vector. A particular lossless compression algorithm
should be chosen based on the system application when the method
is implemented.

Signal compression is carried out in three main steps. First, an
M -level wavelet transform is performed on the samples vector. Sec-
ond, we set a number of transform values to zero to retain at least
percentEnergyCapture percent of the signal energy. Third,
we discard all butnumWaveletSamples elements of the samples
vector to achieve compression. The steps are now described in de-
tail. We further discuss the effects and trade-offs associated with the
parameters in Section 4.

The first step is to do anM -level wavelet transform on the sam-
ples vector. If we have a samples vector of lengthLinit, then we first
zero-pad the length toL = Linit + Lp = 2Mmax , whereLp is the
smallest positive integer such that the expression holds for some pos-
itive integerMmax. We do this step so thatM can then be chosen to
beM ≤ Mmax. In general, this step is not required as the wavelet
transform can be done to as many levels as the number of timesLinit

can be divided by2. TheM found without zero-padding, however,
will be less than or equal to theM value found after zero-padding.
Having the ability to choose a largerM value gives us more flexibil-
ity in compressing a variety of signals.

The choice of the particular wavelet transform should also be de-
termined by the particular application. In this work we choose to use
the Daubechies-4 wavelet transform [8] since the scaling signals and
wavelets have short support thus minimizing computation. The sup-



port is longer than the Haar wavelet transform but the Daubechies-4
transform performs well for a wider variety of signals.

The second step is to retainpercentEnergyCapture per-
cent of the signal energy. We define the energyEL

1 of a signal{ak},
k = 1, . . . , L as

EL
1 =

L∑

k=1

a2
k.

More generally we define the energy of a sub-signal{am, . . . , an}
as

En
m =

n∑

k=m

a2
k.

We thus define an energy profile for the signal{ak}, k = 1, . . . , L
as the set of numbers
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We show a signal with its corresponding wavelet transform and en-
ergy profile in Fig. 2. To capturepercentEnergyCapture per-
cent of the signal energy, we search the energy profile of the wavelet
transform and find the smallest indexj such that

Ej
1/EL

1 ≥ percentEnergyCapture /100.

This search starts from the left of the transformed signal (where the
M -level average signal resides) to the right (where the1-level detail
signal resides). We then set to zero all values in indicesj + 1 to L
of the wavelet transform.
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Fig. 2. The above figure illustrates a signal with its corresponding
wavelet transform and energy profile. The signal is shown at the top.
The wavelet transform (middle) is a 4-level Daubechies-4 wavelet
transform of the signal. The energy profile of the wavelet transform
is shown at the bottom.

The third step is to retain onlynumWaveletSamples of the
wavelet transform. We keep the firstnumWaveletSamples start-
ing from the left and set the rest of the values to zero. This means
that the node will only need to sendnumWaveletSamples of data
instead of the originalL samples.

3.2. Signal Aggregation

The signal aggregation step allows the DSCA method to combine
any two data sets to yield a new combined data set. If a node has

more than two data sets to combine, then it will start by combining
the first two data sets. The new combined data set will then be com-
bined with the third data set. The output of this combination will
then be combined with the fourth data set. It will proceed in this
manner until there is only one data set that incorporates all the orig-
inal data sets. Thus, we focus only on the combination of two data
sets.

Consider two data sets, data set1 and data set2. The procedure
for signal aggregation starts by considering eachnth element in the
two samples number vectors. Assume that thenth element of sam-
ples number vector1 (the samples number vector in data set1) is
an integerc1 and thenth element of samples number vector2 (the
samples number vector in data set2) is c2. Then we have four cases:
(1) c1 > 0 andc2 > 0, (2) c1 = 0 andc2 = 0, (3) c1 > 0 and
c2 = 0, and(4) c1 = 0 andc2 > 0.

If c1 > 0 andc2 > 0, then we know that thenth element of sam-
ples vector1 and samples vector2 are sampled values or are derived
from sampled values. Thenth element of the combined samples
vector will be

CSV[n] =

(
SV1[n]SNV1[n] + SV2[n]SNV2[n]

)

SNV1[n] + SNV2[n]

and thenth element of the combined samples number vector will be

CSNV[n] = SNV1[n] + SNV2[n]

where SVi[n] is thenth element of samples vectori, SNVi[n] is the
nth element of samples number vectori, CSV[n] is thenth element
of the combined samples vector, and CSNV[n] is thenth element of
the combined samples number vector, withi ∈ {1, 2}.

If c1 = 0 andc2 = 0, then we know that thenth element of
samples vector1 and2 were not sampled values and were not derived
from sampled values. Thus, CSNV[n] is set to zero and CSV[n] is
not set.

If c1 > 0 andc2 = 0, then we see that data set1 has information
regarding thenth sample point and data set2 does not. Thus, we set
CSNV[n]=SNV1[n] and CSV[n]=SV1[n]. For c1 = 0 andc2 > 0
we set CSNV[n]=SNV2[n] and CSV[n]=SV2[n].

After the above combining operations, we again use linear in-
terpolation to fill in all the possible sampling points where the com-
bined samples number vector is zero. The resulting data set thus has
a combined samples vector and a combined samples number vector.

The reasoning behind this procedure is simple. If both data sets
have information regarding thenth sample, then we average the sam-
ples in hopes of reducing the affect of the additive zero-mean Gaus-
sian noise. If only one data set has information regarding thenth
sample then we use the sample from that data set. If neither data set
has information regarding thenth sample then we fill in that sample
point using linear interpolation.

3.3. DSCA Method Outline

We provide a pseudocode description of the DSCA method in Ta-
ble 1. Recall that the operation of each node is divided into a signal
sampling phase and a signal processing phase and that the network
is synchronized. The DSCA method applies specifically to the sig-
nal processing phase since it is basically a method to combine dis-
tributed sample sets in a decentralized manner and construct a less
noisy and more complete sample set at the base station node. Note
that thecollectionSize parameter is the number of data sets
the node receives from neighboring nodes before combining the data
sets.



Table 1. The DSCA Method
DSCA Method (int collectionSize)

while (in signal processing phase){
if (just entered signal processing phase and have local
signal samples){

compress local data set;
localSignal = compressed local data set;
send out localSignal;

}
else{

numReceivedSignals = 0;
while (numReceivedSignals< collectionSize){

receive data set from neighboring nodes;
store received data set;
numReceivedSignals++;

}
combinedSignal = localSignal;
for each stored received data set{

signal1 = decompress stored data set;
signal2 = decompress combinedSignal;
signal3 = combine signal1 and signal2;
compress signal3;
combinedSignal = signal3;

}
send out combinedSignal;

}
}

4. SIMULATION AND ANALYSIS RESULTS

4.1. Compression Parameters

We first consider the impact of theM , percentEnergyCapture ,
andnumWaveletSamples parameters on the performance of the
DSCA method.

When we discussed signal compression in Section 3, we men-
tioned that we zero-padded the length of the signal to a power of2
so that we would have the freedom to choose a largeM value. The
reason we do this is that in certain cases doing a higher level wavelet
transform will allow us to discard more of the transform values, thus
achieving better compression. Consider the two waveforms shown in
Fig. 3. SignalA is generated by randomly sampling a noisy version
of the waveform

SA(t) =
1
2

(sin(2πx) + cos(6πx))

and SignalB is generated from the waveform

SB(t) =
1
2

(sin(2πx) + cos(36πx)).

Both SA(t) andSB(t) were corrupted by zero-mean additive white
Gaussian noise with variance0.01 before being randomly sampled.

In Fig. 4, we do a4-level and8-level Daubechies-4 wavelet
transform on both SignalA and SignalB. In this figure we can see a
noticeable difference in the number of levels done in the transform.
For both the transforms of SignalB, we notice a set of significant
transform values from sample number64 to 128. Since these larger
transform values suggest that they actually contain information re-
gardingSB(t) and not just noise information, we should definitely
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Fig. 3. SignalA (top) and SignalB (bottom) are generated by ran-
domly sampling a noisy version ofSA(t) andSB(t), respectively.

keep these values. This means that we can compress the1024 sam-
ples to about128 samples. On the other hand, if we look at the trans-
forms of SignalA, we see that in the8-level transform no real signif-
icant transform values appear until we get less than sample number
50. Thus, if we only transformed SignalA to level 4, we would
have been forced to retain at least64 samples while transforming it
to level8 would allow us to retain less than50 samples.

Another way to see the importance of the choice ofM is in do-
ing the energy capture. In Fig. 5 we capture98% of the energy of
the4-level and8-level transform of both SignalA and SignalB. We
notice that for SignalB, capturing98% of the energy leaves us with
about128 samples in both cases so transforming that signal to8 lev-
els was unnecessary. However, for SignalA, capturing98% of the
energy in the4-level transform leaves us with over60 samples while
in the8-level transform it leaves us with less than40. Thus, we see
that depending on the information available regarding the type and
maximum frequency of the signals that are being observed, the abil-
ity to choose theM values may provide for more compression. In
general, for a given set of possible sampling points, higher frequency
signals will need fewer levels of the wavelet transform. This is be-
cause the high frequency nature of the signal will make it show up in
the detail signal in fewer levels of the wavelet transform. We show
the signals decompressed from the8-level wavelet transforms with
98% energy in Fig. 6.

The percentEnergyCapture parameter is very important
in determining how much noise is removed and how much smooth-
ing takes place. In Fig. 7 we show three signals reconstructed from
90%, 98%, and99.9% of the energy in the signal’s8-level wavelet
transform. In the first signal constructed from90% of the energy, we
see that we removed too much information. Not only did we get rid
of the noise but we also discarded some information significant to the
signal itself. In the last signal constructed from99.9% of the energy
we notice that not enough information was discard and a significant
amount of noise is still present. Lastly, the middle signal created
from a capture of98% of the energy gives a decent representation of
the original signal and most of the noise has been removed.

The numWaveletSamples parameter serves as a way to set
the maximum number of samples transmitted by each node. If fewer
thannumWaveletSamples remain after the energy capture then
the node can send less thannumWaveletSamples samples. How-
ever, if the number of samples that remain after energy capture is
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Fig. 4. A 4-level (top two) and8-level (bottom two) Daubechies-
4 wavelet transform of SignalsA andB. Notice that for SignalB
there is not much more energy compaction to the left as we go from
a4-level transform to an8-level transform due to the large transform
values between samples64 and128. However, the energy of Signal
A is significantly compacted towards the left as we move to an8-
level transform.

greater, then the node will send at mostnumWaveletSamples
samples. If such a situation does occur, there may be more distortion
in the signal but this parameter does allow the system to control the
amount of data that has to be sent.

4.2. MATLAB Simulation Results

We simulate the DSCA method in MATLAB to determine its per-
formance in combining data sets from different nodes. Each data set
that we include in this simulation is a completely new data set and
thus the combined signal is being given more information regarding
the original signal. We would expect the quality of the combined
signal to improve as we increase the number of new data sets.

We consider an example signal from [8]

g(t) = 20t2(1− t)4 cos(12πt)

shown in Fig. 8. We simulate the performance of the DSCA method
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Fig. 5. 98% of the energy is captured in the wavelet transforms of
SignalsA andB.

using the following parameters:

M = 8

percentEnergyCapture = 99.5

numWaveletSamples = 75

and the number of possible sampling points is1024. We corrupt
g(t) with zero-mean additive Gaussian noise with variance0.01 and
consider varying values ofp. We average each data point over25
runs. Note that each data set we incorporate is generated by sampling
a noisy version ofg(t).

We begin the simulation by taking the first data set and com-
pressing it using an8-level Daubechies-4 wavelet transform before
capturing99.5% of the energy. We then set to zero all but the first
numWaveletSamples values in the transform. We next decom-
press this signal and aggregate it with the next new data set. The
combined signal is then compressed in the same way as the first sig-
nal. The next new data set is then aggregated with the decompressed
version of compressed combined signal. The process continues in
this way to include a new data set at each iteration. This simulates
the distributed aggregation and compression of a series of indepen-
dently sampled data sets. The results of this simulation are shown in
Fig. 9.
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Fig. 6. SignalsA andB are decompressed from98% of the energy
of the8-level wavelet transforms.

The figure of merit that we use is the root mean square (RMS)
error measure between two signals. This is defined for two signals
{ak} and{bk}, k = 1, . . . , L as

RMS Error=

√∑L
k=1(ak − bk)2

L

From Fig. 9 we clearly see that initially as we combine an increasing
number of independently sampled data sets the average RMS error
decreases. This is expected since with each data set, we are increas-
ing the amount of information the combined signal has about the
original signal. However, the increase in RMS error starting around
25 data sets comes from the fact that the aggregate signal at that
point is already a very good representation of the true signal. The
data provided by the additional data sets do not offset the loss of in-
formation that occurs from the lossy compression stage. As a result,
at each step more and more signal information is being taken away.
Lastly, we notice that with increasingp, the average RMS error also
decreases. A largerp means that each data set contains more sam-
ples of the noisy version ofg(t) and thus we would expect the RMS
error to decrease.

4.3. Ptolemy Simulation Results

The simulation in Fig. 9 reveals that the DSCA method improves
the signal quality as we combine more data sets. However, the sim-
ulation may be slightly artificial in that we always incorporate an
independently sampled data set at each iteration. Such a setup may
not always be the case. In sensor networks it may be the case that a
node simply broadcasts its signal data and aggregates whatever sig-
nal data it receives from neighboring nodes. As a result, a node may
repeatedly incorporate the same data and not always be adding new
information to the combined signal.

To understand how the DSCA method behaves in such a situa-
tion, we implement the method in a sensor network modelled with
the VisualSense configuration of Ptolemy II [9]. A screen shot of
the simulation environment is presented in Fig. 10. We see16 sen-
sor nodes arranged in a grid formation with a target signal source
in the upper left hand corner of the network. The circle surround-
ing each sensor node represent the transmission range of the node
and the large circle centered at the signal source is the transmission
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Fig. 7. The signal is decompressed from its wavelet transform with
90%, 98%, and99.9% of its energy captured. With90%, too much
information is lost and the signal is distorted (top). A good amount
of information is removed with98% energy (middle). Too little data
is removed with99.9% energy and the signal is still quite noisy (bot-
tom).
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Fig. 8. The source signalg(t) used in the MATLAB simulations.

range of the source. Each sensor node within the transmission range
of the source is able to sample the signal. The goal is to communi-
cate the signal observations to one of the Tier2 nodes at the lower
right hand corner of the network. In Fig. 11 we show the noisy signal
observed by a node in the source signal transmission range and the
signal communicated to a Tier2 node.

The communication between nodes is modelled as follows. At
the beginning of the signal processing phase, each node that has a
sampled data set of the signal will compress the data set and send
the data to its communication module where it is queued. A Pois-
son clock controls the queue and at each clock tick an element of
the queue is broadcast to the node’s surrounding neighbors. The
Poisson clock ticks at times determined by a Poisson processes with
meanmeanTxTime . Each node in the network will also be col-
lecting data sets received from surrounding nodes. A node will col-
lect at leastcollectionSize data sets before running the DSCA
method for aggregation and compression. It will combine the re-
ceived data sets along with its own data set. After the DSCA method,
the node will send the combined data set to the communication mod-
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Fig. 9. MATLAB simulation results evaluating the performance of
the DSCA method. We clearly notice that initially as more data sets
are included, the RMS error decreases. The error eventually starts
increasing as any new information provided by the additional data
sets does not offset the signal information lost during the compres-
sion stage.

Fig. 10. A gray scale screen shot of the simulation environment in
Ptolemy II.

ule. The transmission queue is cleared when the network enters the
signal sampling phase. Notice that the nodes do not maintain any
information regarding the origins of the data sets they receive. Each
node simply receives a collection of data sets and aggregates the in-
formation.

In the following Ptolemy II simulations, we keep the following
parameters constant.

M = 8

numWaveletSamples = 75

percentEnergyCapture = 99.5

p = 0.1

collectionSize = 2

We also keep the node communication range85 distance units to
give each node the ability to communicate with its four nearest neigh-
bors. The simulation data is gathered by a Tier2 node that is placed
in the transmission range of a node that is in the broadcast domain
of a node hearing the signal transmissions. That is, if nodeA is
in the range of the signal source and nodeB is in the transmission
range ofA but not within the signal source range, then the Tier2

Fig. 11. A gray scale screen shot of two display windows from the
the Ptolemy II simulation. The top window shows the original signal
waveform overlayed with the signal waveform available at the Tier2
node after being processed by the DSCA method. The bottom figure
is the noisy waveform observed by a node within the transmission
range of the signal source.

node would be placed in the transmission range ofB but not in the
broadcast domains ofA or the source signal. Furthermore, this Tier
2 node is placed as close as possible to the diagonal line connecting
the signal source and the and lower right hand corner node. This
node placement is used since for the chosen node to node communi-
cation model, signal data diffuses slowly through the network. Thus,
by placing the Tier2 node close to the boundary of the signal source
transmission range guarantees that the Tier2 node will receive signal
data.

In Fig. 12, we consider the RMS error of the signal received
at the Tier2 node versus the transmission range of the source sig-
nal. We setmeanTxTime = 0.2. The trend seen when varying the
transmission range from150 units to250 units is expected since we
are increasing the number of nodes within the range of the signal
source from3 nodes to8 nodes (at a range of200 there are6 nodes
in the transmission range). As we increase the number of nodes in
the signal range, the network has more independently sampled data
sets and thus it is reasonable as seen in Section 4.2 that the Tier2
node can get an increasingly better view of the source signal. How-
ever, at source signal ranges300 units and350 units with13 nodes
and 15 nodes, respectively, we witness an increase in RMS error.
The reason for this increase is because as we increase the number of
nodes in the network we also increase the amount of traffic in the net-
work since more nodes are sending in their own signal observations.
With increased traffic we begin to see the problem of over processing
the signal. Consider, for example, a signal that has been processed
by the DSCA method and is the combination of all independently
sampled data sets in the network. If we send this signal back into
the network and continue processing it, then each time we do lossy
compression on the signal a little bit of the signal is being stripped
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Fig. 12. A plot of RMS error versus the transmission range of the
source signal.

away. Without any new signal information being added, the original
underlying signal will start becoming distorted. In the type of node
to node communication setup that we use for the simulations, it is
very possible for the signal to be over processed since the nodes do
not consider the origins of the received data sets.
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Fig. 13. A plot of RMS error versus the average transmission wait
time meanTxTime .

We consider varying themeanTxTime parameter to get another
view of this issue. By increasingmeanTxTime , we decrease the
amount of traffic in the network since it takes longer for a node
to send its data. We set the source signal transmission range to
300 distance units. In Fig. 13 we see a plot of RMS error versus
meanTxTime . The expected upward trend is seen as we vary the
mean transmission wait time from0.1 to 0.3. With an increase in
meanTxTime we get a decrease in network traffic and we effec-
tively decrease the number of independently sampled data sets that
can be combined before reaching the Tier2 node. However, from a
mean wait time of0.05 to 0.1 we see a decrease in the error. This
also reveals that if there is too much network traffic, we get an over
processing of the signal and can actually decrease the quality of the
signal seen at the Tier2 node. Thus, the key insight from the simula-
tions done in Ptolemy II is that if the network communication meth-
ods do not guarantee the constant infusion of new data sets, then the
system designer must be conscious of the problem of possibly over
processing the signals.

5. CONCLUSION

In this work we have presented the DSCA method for the distributed
aggregation and compression of decentralized low resolution sam-
ples of a signal source. Simulations have shown that the DSCA
method significantly reduces the RMS error between the reconstructed
signal and the original signal as we combined an increasing num-
ber of independently sampled data sets. The method was also im-
plemented in the Ptolemy II network simulation environment and is
shown to perform under more realistic network communication pro-
tocols. This technique can be likened to taking many low quality
snap-shots of the signal and combining them in a distributed manner
to form a high quality picture of the image.

For future work, we would like to consider the effects of differ-
ent types of wavelet transforms on the performance of the DSCA
method. As well, another important area is the effects of phase
shifted signals. For situations where the signal source produces a
slower propagating signal, such as seismic vibrations or acoustic sig-
nals, we have the problem of each node seeing the same signal with
different phase shifts. Some preliminary results (not presented here)
suggest that if each node’s low quality signal sample has enough in-
formation for the data sets to be aligned, then the DSCA method will
still perform well. However, more study is needed to understand how
well the DSCA method will carry over to phase shifted signals.
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